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A null ray approaching a distant astronomical source appears to slow down, while a

massive particle speeds up in accordance with Newtonian gravitation. The integration

of these apparently incompatible aspects of motion in general relativity is due to the

existence of a critical speed. Dynamics of particles moving faster than the critical speed

could then be contrary to Newtonian expectations. Working within the framework of

gravitoelectromagnetism, the implications of the existence of a critical speed are explored.

The results are expected to be significant for high energy astrophysics.

Keywords: General relativity; critical speed; tidal acceleration.

1. Introduction

Gravitoelectromagnetism (“GEM”) originates from the similarity between

Coulomb’s law of electricity and Newton’s law of universal gravitation. In the course

of the development of his dynamical theory of the electromagnetic field, Maxwell

considered a similar theory for the gravitational field1. He noted that gravitational

charges are all of the same kind and lead to attraction instead of repulsion. On the

basis of certain energy arguments, he then concluded that one could not arrive at a

fundamental theory of gravitation in this way1. Several years later, difficulties with

the excess perihelion motion of Mercury led to the phenomenological introduction

of a gravitomagentic force due to mass current in the Sun2,3. However, in 1915

Einstein’s general relativity provided a beautiful explanation of Mercury’s motion4.

This involved a relativistic correction to the Newtonian gravitoelectric potential of

the Sun. Soon afterwards, the gravitational influence of the rotation of the Sun on

planetary orbits was determined within general relativity by de Sitter5. This equa-

torial gravitomagnetic precession turned out to be much smaller and in the opposite

sense as the Einstein gravitoelectric precession5.

A field theory that successfully combines Newtonian gravitation with Lorentz

invariance should necessarily contain a gravitomagnetic field6. The first general in-

vestigation of the gravitomagnetic field within the framework of general relativity

1
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is due to Thirring7. Moreover, the general rate of precession of the orbit of a test

particle in the field of a rotating mass was determined by Lense and Thirring8. An

English translation of the Thirring-Lense papers together with a critical commen-

tary on their results has been provided in Ref. 9. Extensive reviews and discussions

of the various aspects of GEM are contained in Refs. 10 –12. On the observational

side, there has been progress, especially since NASA’s GP-B was launched on April

20, 2004.13–15

The GEM framework will be employed in this paper in order to illustrate the ex-

istence of a critical speed in the dynamics of a test particle moving in a given GEM

field. There are two principal approaches to GEM. The linear perturbation approach

to GEM is briefly presented in Section 2 and the general equation of motion of a

test particle is investigated in Section 3. It is shown that this equation of motion

contains a critical speed given by vc = c/
√

3 in the case of one-dimensional motion.

Section 4 is devoted to a more basic invariant treatment of the critical speed; for this

purpose, the spacetime curvature approach to GEM is employed using the quasi-

inertial Fermi coordinates. In this invariant analysis of relative motion, the critical

speed turns out to be Vc = c/
√

2. For relative (“ultrarelativistic”) motion that is

faster than this critical speed, the results of recent investigations of tidal accelera-

tion/deceleration phenomena in the field of a neutron star or a black hole are briefly

summarized. The case of ultrarelativistic fluid flow is very similar and the relevant

equations are derived in Appendix A. Finally, Section 5 contains general remarks

regarding the gravitational acceleration/deceleration of ultrarelativistic particles.

2. Motion in a GEM Field

Gravitoelectromagnetism provides a useful method for the description of the gravi-

tational field generated by a slowly rotating “nonrelativistic” astronomical source in

the linear approximation of general relativity4. The spacetime metric can be writ-

ten as gµν = ηµν + hµν , where ηµν is the Minkowski metric tensor with signature

+2 and hµν is a first-order perturbation. The gravitational potentials are in gen-

eral gauge-dependent, i.e. hµν → hµν + ǫµ,ν + ǫν,µ, where ǫµ is a vector associated

with the choice of the background inertial coordinates xµ = (ct,x). In terms of the

trace-reversed potentials h̄µν = hµν − 1
2ηµνh, where h = tr(hµν), the gravitational

field equations can be written as

�h̄µν = −16πG

c4
Tµν (1)

after the (“Lorentz”) gauge condition h̄µν
,ν = 0 has been imposed.

The general retarded solution of (1) involves the particular solution

h̄µν =
4G

c4

∫

Tµν(ct − |x − x′|,x′)

|x − x′| d3x′ (2)

plus a solution of the homogeneous wave equation that we simply ignore in the

present analysis. For the sources under consideration, h̄00 = 4Φ/c2, h̄0i = −2Ai/c2
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and h̄ij = O(c−4). Here Φ(t,x) is the gravitoelectric potential and A(t,x) is the

gravitomagnetic vector potential. All terms of O(c−4) will be neglected in the metric

tensor. Thus the important quantities of interest in equation (2) are T 00 = ρc2 and

T 0i = cji, where jµ = (cρ, j) is the mass-energy current. The conservation of the

mass-energy of the source is assured through the imposition of the gauge condition,

i.e. jµ
,µ = 0 follows from

1

c

∂Φ

∂t
+ ∇ ·

(

1

2
A

)

= 0. (3)

The spacetime metric is thus given by

−ds2 = −c2

(

1 − 2
Φ

c2

)

dt2 − 4

c
(A · dx)dt +

(

1 + 2
Φ

c2

)

δijdxidxj . (4)

It is possible to define the gravitoelectric and gravitomagnetic fields in close

analogy with electrodynamics

E = −∇Φ − 1

c

∂

∂t

(

1

2
A

)

, B = ∇× A. (5)

It follows from equations (3) and (5) that

∇× E = −1

c

∂

∂t

(

1

2
B

)

, ∇ ·
(

1

2
B

)

= 0, (6)

while the gravitational field equations (1) reduce to

∇ · E = 4πGρ, ∇×
(

1

2
B

)

=
1

c

∂

∂t
E +

4πG

c
j. (7)

These are the Maxwell equations for the GEM field; they are based on a certain

convention that is explained in the following paragraph.

To preserve the electromagnetic analogy as much as possible, it would be conve-

nient to be able to employ in the GEM case the standard results of electrodynamics

using a special convention. To this end, we assume that the source has gravitoelec-

tric charge QE = GM and gravitomagnetic charge QB = 2GM , where M is the

total mass of the source. It follows that the gravitomagnetic dipole moment of the

source is GJ/c, where J is the total angular momentum of the source. Thus far from

the source (r = |x| ≫ GM/c2)

Φ ∼ GM

r
, A ∼ G

c

J× x

r3
, (8)

which are consistent with equations (2) and (3). Moreover, a test particle of inertial

mass m has gravitoelectric charge qE = −m and gravitomagnetic charge qB = −2m

in this convention. We note that the signs of (qE , qB) are opposite to those of

(QE , QB) to preserve the attractive nature of gravity; furthermore, the ratio of

gravitomagnetic charge to the gravitoelectric charge is always 2, since the linear

approximation of general relativity involves a spin-2 field. This is consistent with

the fact that the ratio of the magnetic charge to the electric charge of a particle is



February 5, 2008 0:27 WSPC/INSTRUCTION FILE beyond-ms

4 Bahram Mashhoon

unity in Maxwell’s spin-1 electrodynamics16. The magnetic charge employed here

should be distinguished from the magnetic monopole strength, which is strictly zero

throughout this paper.

The geodesic equation of motion of a test particle in the stationary GEM field

of a source with ∂Φ/∂t = 0 and ∂A/∂t = 0 may be written in a form analogous to

the Lorentz force law,

m
dv

dt
= −mE− 2m

v

c
× B, (9)

when velocity-dependent terms of order higher than v/c are neglected. To go be-

yond the GEM analogy, let us explore the significance of the terms that have been

neglected in equation (9). The geodesic equation for a particle with proper time τ

and four-velocity uµ = dxµ/dτ = γ(1,v/c) is given by

duµ

dτ
+ Γµ

ρσuρuσ = 0. (10)

Once the linear GEM field is given, it is possible to employ equation (10) for the

motion of particles of any speed in this field; for instance, one may consider the

force-free motion of cosmic rays in the gravitational field of the Earth. For the sake

of simplicity, we choose units such that c = 1 in what follows. For the GEM field,

the Christoffel symbols are

Γ0
0µ = −Φ,µ, Γ0

ij = 2A(i,j) + δijΦ,0, (11)

Γi
00 = −Φ,i − 2Ai,0, Γi

0j = δijΦ,0 + ǫijkBk, (12)

Γi
jk = δijΦ,k + δikΦ,j − δjkΦ,i. (13)

The physical consequences of the geodesic equation (10) with the connection given

by equations (11)-(13) are explored in the following section.

3. Critical Speed

It is straightforward to show that the components of equation (10) can be expressed

as

1

γ

dγ

dt
= (1 − v2)Φ,0 + 2vi[Φ,i − A(i,j)v

j ], (14)

dvi

dt
= (1 + v2)Φ,i − 2(v × B)i + 2Ai,0 − vi(3 − v2)Φ,0

+ 2vivj [A(j,k)v
k − 2Φ,j]. (15)

Here we have used the fact that duµ/dτ = γduµ/dt and then separated the equations

for γ and v. The worldline of the test particle is timelike; therefore, it follows from

uµuµ = −1 that

1

γ2
= 1 − v2 − 2(1 + v2)Φ + 4v · A. (16)
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Consider a stationary axisymmetric source such that for r ≫ GM/c2 the po-

tentials are given by equation (8). In this case, equation (15) may be expressed

as

dv

dt
= −GM

r3
[(1 + v2)x − 4(x · v)v] − 2G

r5
[r2J × v

− 3(J · x)L + 3(J · L)(x · v)v], (17)

where L = x×v. For one-dimensional motion along the rotation axis of the source,

equation (17) reduces to

dv

dt
= −GMx

r3
(1 − 3v2). (18)

This equation contains a critical speed vc = 1/
√

3; that is, for motion with v < vc,

we have the standard attractive force of gravity familiar from Newtonian physics,

while for v = vc, the particle experiences no force and for v > vc the gravitational

attraction turns to repulsion. These results are valid in the linear approximation

for the gravitational field under consideration here. It is interesting to note that if

we use instead the standard post-Newtonian approximation scheme for the field of

the source, the factor (1 − 3v2) in equation (18) becomes (1 − 3v2 − 4Φ), where

Φ = GM/r ≪ 1.17

Equation (18) has the exact solution (v = dr/dt)

v2 = v2
c − (v2

c − v2
∞

)e−6Φ; (19)

however, in the linear approximation, e−6Φ ≈ 1 − 6Φ, and equation (19) is valid

only in the form

v2 = v2
∞

+
2GM

r
(1 − 3v2

∞
), (20)

so that the speed of an infalling test particle increases, remains constant or decreases

depending on whether v∞ is less than, equal to or more than vc = 1/
√

3, respectively.

In the nonrelativistic limit, 1− 3v2
∞

→ 1 and equation (20) reduces to the standard

result of Newtonian gravitation.

It is crucial to recognize here that highly relativistic outflows in the form of

astrophysical jets are expected to occur along the rotation axis of the central massive

source. Thus an equation such as (18), though valid for motion along the rotation

axis, could nevertheless play a rather significant role in the gravitational physics of

phenomena associated with jets.

In connection with jets, it is useful to consider radial motion in the exterior Kerr

spacetime. The Kerr metric is given by

−ds2 = −dt2 + Σ

(

1

∆
dρ̂2 + dϑ2

)

+ (ρ̂2 + a2) sin2 ϑdφ2

+ 2GM
ρ̂

Σ
(dt − a sin2 ϑdφ)2, (21)
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where Σ = ρ̂2 + a2 cos2 ϑ and ∆ = ρ̂2 − 2GMρ̂ + a2 in Boyer-Lindquist coordinates

(t, ρ̂, ϑ, φ). Here M is the mass and a = J/M is the specific angular momentum of

the source. The geodesic equations of motion for a test particle moving along the

rotation axis reduce to

dt

dτ
= γ̂

ρ̂2 + a2

ρ̂2 − 2GMρ̂ + a2
,

dρ̂

dτ
= ±

√

γ̂2 − 1 +
2GMρ̂

ρ̂2 + a2
, (22)

where γ̂ is an integration constant. When γ̂ ≥ 1, it is the Lorentz factor of the

test particle as measured by the static inertial observers at spatial infinity, i.e.

γ̂−2 = 1 − v2
∞

. It follows from system (22) that

(

dρ̂

dt

)2

= v2
∞

(

1 + 12
G2M2

ρ̂2

)

+
2GM

ρ̂

(

1 − 3v2
∞

− 4GM

ρ̂

)

+ O

(

1

ρ̂3

)

. (23)

To compare with our GEM results, this equation must be expressed in terms of the

isotropic radial coordinate r,

ρ̂ = r

(

1 +
GM

2r

)2

. (24)

Thus equation (20) can be recovered, in terms of either ρ̂ or r, to linear order in

the gravitoelectric potential.

Shapiro’s radar echo delay experiments have demonstrated that photons in effect

slow down in the gravitational field of a mass M . In Newtonian gravity, however,

massive test particles speed up as they approach a gravitational source. It turns out

that this is also the case in general relativity if the speed of the particle at infinity is

below a critical speed. Otherwise, as v∞ approaches the speed of light the particle

has lightlike behavior. That a particle with an initial speed v∞ above a critical

speed slows down in the Schwarzschild field as the particle radially approaches the

source was first demonstrated in Refs. 18 and 19. The critical speed vc = 1/
√

3

was discussed by Carmeli18, who derived equation (20) for radial motion in the

exterior Schwarzschild field. The propulsion aspects of this result have recently

received attention.20 Using a more invariant approach, Jaffe and Shapiro19 discussed

a transition velocity, vt ≃ 1/
√

2, in connection with the radial motion of particles in

the Schwarzschild field. They argued that the coordinate speed should be replaced

with dl/dt, where dl2 = γijdxidxj and γij = gij − g0ig0j/g00. This results, working

to linear order in the Schwarzschild spacetime, in an equation of the same form as

equation (20) except that the factor (1 − 3v2
∞

) is replaced by (1 − 2v2
∞

).

It is clear that by employing physically admissible coordinate systems one can

obtain different numerical values for the critical speed. The critical speeds 1/
√

3 and

1/
√

2 have also been discussed in Ref. 21. Nevertheless, it is important to remark

here that with respect to the basic class of static (generally noninertial) observers

in the exterior Schwarzschild spacetime, the local speed of an infalling particle

monotonically increases toward unity, while the local speed of light is always equal

to unity.
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In the standard post-Newtonian approximation scheme, one is limited to the

slow-motion weak-field regime and therefore the coordinate quantities in the equa-

tions of motion are assumed to be physically significant as they are observable

in the standard interpretation. Here, however, we have been using the linear post-

Newtonian scheme for the determination of the field generated by the central source,

while the test particles can travel at any speed. Thus to study further the predic-

tions of general relativity in this case, we must construct appropriate invariants that

would represent actually measurable quantities. To this end, we find it convenient

to study relative motion in the quasi-inertial Fermi coordinate system22 established

about the motion of a reference observer. This manifestly invariant approach is

described in the next section.

4. Fermi Coordinates

Consider an observer O following a geodesic in the gravitational field of an astro-

nomical source. Let λµ
(α) be the observer’s local orthonormal tetrad frame that is

parallel propagated along the worldline of O. That is, λµ
(0) = dxµ/dτ is the ob-

server’s four-velocity vector as well as its local temporal axis and λµ
(i), i = 1, 2, 3

are the spatial unit gyro directions that form the local spatial frame of the observer.

Here τ is the proper time of O. To describe physical phenomena relative to O, it

is natural to construct a Fermi coordinate system along its worldline. This is a

geodesic coordinate system based on the observer’s local frame. Indeed, an event P

with Fermi coordinates Xµ = (T,X) can be orthogonally connected to the worldline

of the reference observer at P0 by a unique spacelike geodesic of proper length σ. Let

τ be the proper time along the reference trajectory at P0 and ηµ = (dxµ/dσ)0 be the

unit tangent vector to the spacelike geodesic at P0; then, T = τ and Xi = σηµλµ
(i).

Thus, O has Fermi coordinates (τ,0), so that the reference observer always occupies

the spatial origin of the Fermi coordinate system. The spacetime metric in Fermi

coordinates is given by

F g00 = −1 − F R0i0j(T )X iXj + . . . , (25)

F g0i = −2

3
F R0jik(T )XjXk + . . . , (26)

F gij = δij −
1

3
F Rikjl(T )XkX l + . . . , (27)

where

F Rαβγδ(T ) = Rµνρσλµ
(α)λ

ν
(β)λ

ρ
(γ)λ

σ
(δ) (28)

is the projection of the Riemann tensor on the local tetrad frame of observer O.

The Fermi coordinates are admissible in a cylindrical region with |X| < R along

the reference worldline such that R(T ) is a certain minimum radius of curvature of

spacetime.
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The equation of motion of a free test particle in the Fermi coordinate system

can be expressed as

dUµ

ds
+ F Γµ

αβUαUβ = 0, (29)

where Uµ = dXµ/ds = Γ(1,V) is the particle’s four-velocity. The geodesic motion

of the particle is always timelike; therefore,

Γ−2 = − F g00 − 2 F g0iV
i − F gijV

iV j > 0. (30)

It follows from equation (29) that

1

Γ

dΓ

dT
= − F Γ0

αβ

dXα

dT

dXβ

dT
, (31)

d2X i

dT 2
+ (F Γi

αβ − F Γ0
αβV i)

dXα

dT

dXβ

dT
= 0. (32)

The equation of relative motion (32) can be expressed to linear order in distance

away from the reference observer O by using the terms given explicitly in the metric

tensor (25)-(27). The result is

d2X i

dT 2
+ F R0i0jX

j + 2 F Rikj0V
kXj

+
2

3
(3 F R0kj0V

iV k + F RikjlV
kV l + F R0kjlV

iV kV l)Xj = 0, (33)

while the modified Lorentz factor is given by

1

Γ2
= 1 − V 2 + F R0i0jX

iXj +
4

3
F R0jikXjV iXk

+
1

3
F RikjlV

iXkV jX l. (34)

Neglecting the velocity-dependent terms in equation (33), one recovers the Jacobi

equation. It is important to note that the treatment of test particle motion can be

generalized to the flow of a perfect fluid as in Appendix A.

To interpret the generalized Jacobi equation (33), let us first proceed by analogy

with the linear perturbation theory of Section 2 and note that the metric in the

Fermi frame reduces to the Minkowski metric along the reference trajectory; hence,

one may write F g00 = −1 + 2Φ and F g0i = −2Ai, where

Φ = −1

2
F R0i0jX

iXj , Ai =
1

3
F R0jikXjXk. (35)

Moreover, the corresponding GEM fields are obtained from equation (5), so that to

lowest order

Ei = F R0i0jX
j, Bi = −1

2
ǫijk

F Rjk0lX
l. (36)

It follows that equation (33) can be written as

m
dV

dT
= qEE + qBV × B + O(V 2), (37)
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where qE = −m and qB = −2m as before. Though this analog of the Lorentz force

law is extremely interesting and leads to the physical interpretation of the Bel and

Bel-Robinson tensors23, it is important to recognize that the higher-order terms in

equation (37) become rather significant for ultrarelativistic motion. To see this, let

us imagine a circumstance where one-dimensional motion—along the Z direction,

say—is possible. Then it follows from the symmetries of the Riemann tensor that

equation (33) reduces to

d2Z

dT 2
+ k(T )(1 − 2Ż2)Z = 0, (38)

where Ż = dZ/dT and k(T ) = F RTZTZ . The generalized Jacobi equation (38) has

solutions for Ż = ±1/
√

2 such that the relative motion within the Fermi frame is

uniform. Below the critical speed Vc = 1/
√

2, the relative motion is similar to what

is expected from relativistic tides in accordance with the Jacobi equation. The sit-

uation changes drastically, however, for ultrarelativistic relative motion above the

critical speed Vc. If k(T ) < 0, then an initially ultrarelativistic particle decelerates

with respect to the reference particle and asymptotically approaches uniform mo-

tion with critical speed Vc. If k(T ) > 0, then an initially ultrarelativistic particle

accelerates with respect to the reference particle.24 These results for the motion of

free particles can be extended to fluid flow (see Appendix A).

Ultrarelativistic particles are expected to be produced in abundance in the cen-

tral engines of active galactic nuclei as well as supernova explosions and X-ray

sources. It is therefore natural to expect that the tidal acceleration/deceleration

of ultrarelativistic particles could have significant implications for the physics of

astrophysical jets and high-energy cosmic rays.

Assuming that the gravitational field of the central source may be described by

the Kerr field, consider a Fermi coordinate system established along reference escape

trajectories on the axis of rotation given by equation (22) with γ̂ & 1. Such particles

with γ̂ near unity provide an ambient medium surrounding the central source. High-

energy particles originating near the poles of the central collapsed configuration and

moving outward along the rotation axis faster than the critical speed 1/
√

2 ≈ 0.7

relative to the ambient medium experience significant tidal deceleration25, while

such ultrarelativistic particles moving outward normal to the rotation axis expe-

rience significant tidal acceleration relative to the ambient medium. In a series of

recent papers, these phenomena have been investigated in some detail.24–27 It turns

out that tidal deceleration occurs for outflow velocities within a cone of half angle

θ ≈ tan−1
√

2 ≈ 55◦ around the rotation axis.26,27 On the other hand, tidal accel-

eration occurs for outflow velocities outside the critical velocity cone.26,27

A complete analysis must of course include plasma and radiation effects as

well. Nevertheless, preliminary results appear to be consistent with observations

of microquasars and Chandra studies of certain neutron star X-ray sources in our

Galaxy.25–27
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5. Discussion

Using the main approaches to GEM , we have demonstrated the existence of a crit-

ical speed that could have fundamental consequences for the gravitational physics

of ultrarelativistic flows. The physical origin of the critical speed can be traced back

to a “conflict” between the intuitively expected behavior of particles based on New-

tonian gravitation and the behavior of light in a gravitational field; indeed, both of

these aspects are properly integrated within general relativity.

Imagine a light ray propagating from event P1 : (t1,x1) to event P2 : (t2,x2)

in a global inertial system of reference; hence, t2 − t1 = |x2 − x1|. If the spacetime

is now slightly perturbed by the presence of a GEM field as in Section 2, then the

arrival of the signal at P2 is accompanied mainly by a Shapiro gravitoelectric delay

given by

∆GE = 2

∫ P2

P1

Φ dℓ, (39)

where dℓ is the element of length along the path of the unperturbed ray.28 This

is intimately related to the fact that the propagation of electromagnetic waves in

the gravitational medium takes place with an effective index of refraction given

by29 n ≈ 1 + 2Φ for Φ << 1. On the other hand, the kinetic energy of a particle

increases as it gets closer to a gravitational source according to the Newtonian theory

of gravitation. The conflict is resolved in general relativity through the existence

of a critical speed such that “ultrarelativistic” particle motion with speed above

this critical speed has significant features that violate our nonrelativistic intuition

based on Newtonian gravitation. In the linear post-Newtonian approach, the critical

coordinate speed is 1/
√

3; however, for relative motion in Fermi coordinates, the

invariant critical speed is 1/
√

2. The latter case has been the subject of recent

studies due to its direct observational significance.

The most significant consequence of the existence of the critical speed is a pos-

sible gravitational mechanism for the acceleration/deceleration of ultrarelativistic

particles. This mechanism can be elucidated by comparing and contrasting the grav-

itational and electromagnetic interactions. The motion of a charged particle in an

external electromagnetic field in Minkowski spacetime is given by

d

dt

(

v√
1 − v2

)

=
q

m
(E + v × B) (40)

in accordance with the Lorentz force law. This equation may be written as

dv

dt
=

q

m

√

1 − v2[E − v(v · E) + v × B], (41)

which indicates that the closer v gets to unity, the more difficult it will be to change

the velocity of the particle. For a finite external electromagnetic field, the motion

of a charged particle with m 6= 0 is effectively uniform for v approaching unity.

Thus the critical speed that appears in the electromagentic case is the fundamental

speed, namely, unity.
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The gravitational analog of equation (40) in the quasi-inertial Fermi coordinate

system is

d

dT
(ΓV i) = −Γ( F Γi

00 + 2 F Γi
0jV

j + F Γi
jkV jV k). (42)

while the analog of equation (41) is given by equation (32). The fact that the

right-hand side of equation (42) is proportional to the modified Lorentz factor Γ

is responsible for the bending of ultrarelativistic particle orbits by a gravitational

field—indeed, this deflection approaches that of light in the appropriate limit. Sim-

ilarly, equation (32) implies that it is in general possible to change the velocity

of ultrarelativistic particles considerably in a gravitational field, since the analog

of
√

1 − v2 in equation (41) involving the fundamental speed is missing in equa-

tion (32); indeed, there is a critical speed of 1/
√

2, but it appears in a different

way. An even more striking illustration of this circumstance can be given for one-

dimensional motion.

Consider a situation where E and B are parallel and the charged particle moves

along the field lines. Then equation (41) reduces to

dv

dt
=

q

m
(1 − v2)3/2

E , (43)

which may be compared and contrasted with equations (18) and (38). While the

ultimate (“critical”) speed in equation (43) severely restricts the magnitude of ac-

celeration of a particle with v → 1, this is not the case for gravitational motion in

equations (18) and (38), which exhibit instead critical speeds of 1/
√

3 and 1/
√

2,

respectively.

The appearance of the critical factor (1 − 2Ż2) in equation (38) is due to the

fact that in the quasi-inertial Fermi coordinates, one finds that to lowest order

F Γi
00 = F Γ0

0i = −1

2
( F g00),i. (44)

Indeed, the first term in the critical factor originates with F Γi
00, while the second

term originates with F Γ0
0i. The factor 2 in the latter term is due to the fact that

F Γ0
0i occurs twice, since F Γ0

0i = F Γ0
i0; hence, the tensorial character of general

relativity is responsible for the appearance of the factor of 2 in (1− 2Ż2). Thus the

circumstance that the critical speed is unity in electrodynamics while it is 1/
√

2

in gravitation is related to the spin-1 nature of the electromagnetic field and the

spin-2 nature of the linearized general relativity in the Fermi system, respectively.

Recent investigations of the novel gravitational mechanism for the accelera-

tion/deceleration of ultrarelativistic particles indicate that this mechanism may

play a fundamental role in high-energy astrophysics.24–27 Furthermore, the tidal

motion of charged particles has also been recently examined in an interesting astro-

physical context in Ref. 30, where the important role of the critical speed has been

independently confirmed.
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Appendix A. Gravitational Dynamics of Relativistic Flows

Imagine a perfect fluid with energy density ρ and pressure p in the gravitational

field considered in Section 4. The energy-momentum tensor of the fluid is given by

T µν = (ρ + p)uµuν + pgµν , (A.1)

where uµ is the unit four-velocity vector of the fluid. The purpose of this Appendix is

to express the dynamical laws T µν
;ν = 0 in the Fermi coordinate system established

about the worldline of the geodesic observer O.

Let us first note that in a global inertial frame of reference, the dynamical laws

may be expressed as

∂ρ̃

∂t
+ ∇ · (ρ̃v) =

∂p

∂t
, (A.2)

ρ̃
dv

dt
= −∇p− ∂p

∂t
v, (A.3)

where ρ̃ = γ2(ρ + p) and γ = (1 − v2)−1/2 is the Lorentz factor of the fluid.

Equation (A.2) follows directly from the µ = 0 component of T µν
;ν = 0, while

the µ = i component, when combined with equation (A.2) implies equation (A.3).

Equations (A.2) and (A.3) are the relativistic continuity and Euler equations, re-

spectively, and assume their familiar form when the pressure has no explicit depen-

dence upon time.

In the quasi-inertial Fermi coordinates, we expect that the dynamical laws would

have the same form as equations (A.2) and (A.3) but modified by the presence of

curvature terms. In fact, let the four-velocity be Γ(1,V) as before, where Γ > 0 is

given by equation (30). Then with ρ̃ = Γ2(ρ + p), the modified equations of motion

become

∂ρ̃

∂T
+ ∇ · (ρ̃V) = −p,α

F g0α − ρ̃K, (A.4)

ρ̃

[

dV i

dT
+ ( F Γi

αβ − F Γ0
αβV i)

dXα

dT

dXβ

dT

]

= −p,α
F giα + (p,α

F g0α)V i, (A.5)

where

K =

(

F Γ0
αβ

dXα

dT
+ F Γα

αβ

)

dXβ

dT
. (A.6)

To lowest order, K is given by

K =
1

3
(8 F R0i0j − F Rij)V

iXj +
2

3
F R0ijkV iV jXk. (A.7)

It follows from these results that equations (A.2) and (A.3) are recovered along

the reference trajectory at (T,0), as required. Moreover, in the absence of pressure

equation (A.5) is equivalent to equation (32) with attendant consequences regarding

the existence of the critical speed Vc = 1/
√

2. A complete analysis of equations (A.4)

and (A.5) is beyond the scope of this work.
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