455 research outputs found

    Association of ultracold double-species bosonic molecules

    Full text link
    We report on the creation of heterospecies bosonic molecules, associated from an ultracold Bose-Bose mixture of 41K and 87Rb, by using a resonantly modulated magnetic field close to two Feshbach resonances. We measure the binding energy of the weakly bound molecular states versus the Feshbach field and compare our results to theoretical predictions. We observe the broadening and asymmetry of the association spectrum due to thermal distribution of the atoms, and a frequency shift occurring when the binding energy depends nonlinearly on the Feshbach field. A simple model is developed to quantitatively describe the association process. Our work marks an important step forward in the experimental route towards Bose-Einstein condensates of dipolar molecules.Comment: 5 pages, 4 figure

    Double species condensate with tunable interspecies interactions

    Full text link
    We produce Bose-Einstein condensates of two different species, 87^{87}Rb and 41^{41}K, in an optical dipole trap in proximity of interspecies Feshbach resonances. We discover and characterize two Feshbach resonances, located around 35 and 79 G, by observing the three-body losses and the elastic cross-section. The narrower resonance is exploited to create a double species condensate with tunable interactions. Our system opens the way to the exploration of double species Mott insulators and, more in general, of the quantum phase diagram of the two species Bose-Hubbard model.Comment: 4 pages, 4 figure

    Coherent optical transfer of Feshbach molecules to a lower vibrational state

    Full text link
    Using the technique of stimulated Raman adiabatic passage (STIRAP) we have coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply bound vibrational quantum level. Our measurements indicate a high transfer efficiency of up to 87%. As the molecules are held in an optical lattice with not more than a single molecule per lattice site, inelastic collisions between the molecules are suppressed and we observe long molecular lifetimes of about 1 s. Using STIRAP we have created quantum superpositions of the two molecular states and tested their coherence interferometrically. These results represent an important step towards Bose-Einstein condensation (BEC) of molecules in the vibrational ground state.Comment: 4 pages, 5 figure

    Observation of heteronuclear atomic Efimov resonances

    Full text link
    The Efimov effect represents a cornerstone in few-body physics. Building on the recent experimental observation with ultracold atoms, we report the first experimental signature of Efimov physics in a heteronuclear system. A mixture of 41^{41}K and 87^{87}Rb atoms was cooled to few hundred nanoKelvins and stored in an optical dipole trap. Exploiting a broad interspecies Feshbach resonance, the losses due to three-body collisions were studied as a function of the interspecies scattering length. We observe an enhancement of the three-body collisions for three distinct values of the interspecies scattering lengths, both positive and negative. We attribute the two features at negative scattering length to the existence of two kind of Efimov trimers, namely KKRb and KRbRb.Comment: 4 pages, 4 figure

    Collisional and molecular spectroscopy in an ultracold Bose-Bose mixture

    Full text link
    The route toward a Bose-Einstein condensate of dipolar molecules requires the ability to efficiently associate dimers of different chemical species and transfer them to the stable rovibrational ground state. Here, we report on recent spectroscopic measurements of two weakly bound molecular levels and newly observed narrow d-wave Feshbach resonances. The data are used to improve the collisional model for the Bose-Bose mixture 41K87Rb, among the most promising candidates to create a molecular dipolar BEC.Comment: 13 pages, 3 figure

    Cruising through molecular bound state manifolds with radio frequency

    Full text link
    The emerging field of ultracold molecules with their rich internal structure is currently attracting a lot of interest. Various methods have been developed to produce ultracold molecules in pre-set quantum states. For future experiments it will be important to efficiently transfer these molecules from their initial quantum state to other quantum states of interest. Optical Raman schemes are excellent tools for transfer, but can be involved in terms of equipment, laser stabilization and finding the right transitions. Here we demonstrate a very general and simple way for transfer of molecules from one quantum state to a neighboring quantum state with better than 99% efficiency. The scheme is based on Zeeman tuning the molecular state to avoided level crossings where radio-frequency transitions can then be carried out. By repeating this process at different crossings, molecules can be successively transported through a large manifold of quantum states. As an important spin-off of our experiments, we demonstrate a high-precision spectroscopy method for investigating level crossings.Comment: 5 pages, 5 figures, submitted for publicatio

    Evidence for a GABAergic system in rodent and human testis: Local GABA production and GABA receptors

    Get PDF
    The major neurotransmitter of the central nervous system, gamma-aminobutyric acid (GABA), exerts its actions through GABA(A), GABA(B) and GABA(C) receptors. GABA and GABA receptors are, however, also present in several non-neural tissues, including the endocrine organs pituitary, pancreas and testis. In the case of the rat testis, GABA appears to be linked to the regulation of steroid synthesis by Leydig cells via GABA(A) receptors, but neither testicular sources of GABA, nor the precise nature of testicular GABA receptors are fully known. We examined these points in rat, mouse, hamster and human testicular samples. RT-PCR followed by sequencing showed that the GABA-synthesizing enzymes glutamate decarboxylase (GAD) 65 and/or GAD67, as well as the vesicular GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT) are expressed. Testicular GAD in the rat was shown to be functionally active by using a GAD assay, and Western blot analysis confirmed the presence of GAD65 and GAD67. Interstitial cells, most of which are Leydig cells according to their location and morphological characteristics, showed positive immunoreaction for GAD and VIAAT/VGAT proteins. In addition, several GABA(A) receptor subunits (alpha1-3, beta1-3, gamma1-3), as well as GABAB receptor subunits R1 and R2, were detected by RT-PCR. Western blot analysis confirmed the results for GABA(A) receptor subunits beta2/3 in the rat, and immunohistochemistry identified interstitial Leydig cells to possess immunoreactive GABA(A) receptor subunits beta2/3 and alpha1. The presence of GABA(A) receptor subunit alpha1 mRNA in interstitial cells of the rat testis was further shown after laser microdissection followed by RT-PCR analysis. In summary, these results describe molecular details of the components of an intratesticular GABAergic system expressed in the endocrine compartment of rodent and human testes. While the physiological significance of this peripheral neuroendocrine system conserved throughout species remains to be elucidated, its mere presence in humans suggests the possibility that clinically used drugs might be able to interfere with testicular function. Copyright (C) 2003 S. Karger AG, Basel

    Repulsively bound atom pairs: Overview, Simulations and Links

    Full text link
    We review the basic physics of repulsively bound atom pairs in an optical lattice, which were recently observed in the laboratory, including the theory and the experimental implementation. We also briefly discuss related many-body numerical simulations, in which time-dependent Density Matrix Renormalisation Group (DMRG) methods are used to model the many-body physics of a collection of interacting pairs, and give a comparison of the single-particle quasimomentum distribution measured in the experiment and results from these simulations. We then give a short discussion of how these repulsively bound pairs relate to bound states in some other physical systems.Comment: 7 pages, 3 figures, Proceedings of ICAP-2006 (Innsbruck

    High spatial resolution and temporally resolved t(2) (*) mapping of normal human myocardium at 7.0 tesla: an ultrahigh field magnetic resonance feasibility study

    Get PDF
    Myocardial tissue characterization using T(2) (*) relaxation mapping techniques is an emerging application of (pre)clinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T(2) (*) mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T(2) (*) imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T(2) (*) mapping. In phantom experiments single cardiac phase and dynamic (CINE) gradient echo imaging techniques provided similar T(2) (*) maps. In vivo studies showed that the peak-to-peak B(0) difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T(2) (*) weighting ranging from TE = 2.04 ms to TE = 10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T(2) (*) values were found for anterior (T(2) (*) = 14.0 ms), anteroseptal (T(2) (*) = 17.2 ms) and inferoseptal (T(2) (*) = 16.5 ms) myocardial segments. Shorter T(2) (*) values were observed for inferior (T(2) (*) = 10.6 ms) and inferolateral (T(2) (*) = 11.4 ms) segments. A significant difference (p = 0.002) in T(2) (*) values was observed between end-diastole and end-systole with T(2) (*) changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T(2) (*) mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes

    The podiform chromitites in the Dagküplü and Kavak mines, Eskisehir ophiolite (NW-Turkey) : genetic implications of mineralogical and geochemical data

    Get PDF
    Mantle tectonites from Eskisehir (NW-Turkey) include high-Cr chromitites with limited variation of Cr#, ranging from 65 to 82. Mg# ratios are between 54 and 72 and chromite grains contain up to 3.71 wt% Fe2O3 and 0.30 wt% TiO2. PGE contents are variable and range from 109 to 533 pbb. Chondrite-normalized PGE patterns are flat from Os to Rh and negatively sloping from Rh to Pd. Total PGE contents and low Pd/Ir ratios (from 0.07 to 0.41) of chromitites are consistent with typical ophiolitic chromitites. Chromite grains contain a great number of solid inclusions. They comprise mainly of highly magnesian (Mg# 95-98) mafic silicates (olivine, amphibole and clinopyroxene) and base-metal sulfide inclusions of millerite (NiS), godlevskite (Ni7S6), bornite (C5FeS4) with minor Ni arsenides of maucherite (Ni11As8) and orcelite (Ni5-xAs2), and unnamed Cu2FeS3 phases. Heazlewoodite, awaruite, pyrite, and rare putoranite (Cu9Fe,Ni9S16) were also detected in the matrix of chromite as secondary minerals. Laurite [(Ru,Os)S2] was the only platinum-group minerals found as primary inclusions in chromite. They occur as euhedral to subhedral crystals trapped within chromite grains and are believed to have formed in the high temperature magmatic stage during chromite crystallization. Laurite has limited compositional variation, range between Ru0.94Os0.03Ir0.02S1.95 and Ru0.64Os0.21Ir0.10S1.85, and contain up to 1.96 at% Rh and 3.67 at% As. Close association of some laurite grains with amphibole and clinopyroxene indicates crystallization from alkali rich fluid bearing melt in the suprasubduction environment. The lack of any IPGE alloys, as well as the low Os-content of laurite, assumes that the melt from which chromite and laurite were crystallized had relatively high fS2 but never reached the fS2 to crystallize the erlichmanite. The presence of millerite, as primary inclusions in chromite, reflects the increasing fS2 during the chromite crystallization
    • …
    corecore