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Abstract
The major neurotransmitter of the central nervous sys-
tem, gamma-aminobutyric acid (GABA), exerts its ac-
tions through GABAA, GABAB and GABAC receptors.
GABA and GABA receptors are, however, also present in
several non-neural tissues, including the endocrine or-
gans pituitary, pancreas and testis. In the case of the rat
testis, GABA appears to be linked to the regulation of ste-
roid synthesis by Leydig cells via GABAA receptors, but
neither testicular sources of GABA, nor the precise na-
ture of testicular GABA receptors are fully known. We
examined these points in rat, mouse, hamster and hu-
man testicular samples. RT-PCR followed by sequencing
showed that the GABA-synthesizing enzymes glutamate
decarboxylase (GAD) 65 and/or GAD67, as well as the
vesicular GABA transporter vesicular inhibitory amino
acid transporter (VIAAT/VGAT) are expressed. Testicular
GAD in the rat was shown to be functionally active by

using a GAD assay, and Western blot analysis confirmed
the presence of GAD65 and GAD67. Interstitial cells,
most of which are Leydig cells according to their location
and morphological characteristics, showed positive im-
munoreaction for GAD and VIAAT/VGAT proteins. In
addition, several GABAA receptor subunits (·1–3, ß1–3,
Á1–3), as well as GABAB receptor subunits R1 and R2,
were detected by RT-PCR. Western blot analysis con-
firmed the results for GABAA receptor subunits ß2/3 in
the rat, and immunohistochemistry identified interstitial
Leydig cells to possess immunoreactive GABAA receptor
subunits ß2/3 and ·1. The presence of GABAA receptor
subunit ·1 mRNA in interstitial cells of the rat testis was
further shown after laser microdissection followed by
RT-PCR analysis. In summary, these results describe mo-
lecular details of the components of an intratesticular
GABAergic system expressed in the endocrine compart-
ment of rodent and human testes. While the physiologi-
cal significance of this peripheral neuroendocrine sys-
tem conserved throughout species remains to be eluci-
dated, its mere presence in humans suggests the possi-
bility that clinically used drugs might be able to interfere
with testicular function.
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Introduction

Gamma-aminobutyric acid (GABA) is the most im-
portant inhibitory neurotransmitter in the vertebrate cen-
tral nervous system. GABA interacts with ionotropic
GABAA receptors, metabotropic GABAB receptors and a
recently identified class of transmitter-gated ion channels,
called GABAC receptors [1].

In addition to the well-established synaptic function of
GABA, recent data indicate that GABA is important for
other processes as well. For example, GABA is a factor
involved in the regulation of neuronal cell proliferation
during development [2–6]. Another non-synaptic role of
GABA in neurons [7, 8], modulation of neurosteroid pro-
duction, has also been described.

GABA is however, present also in non-neuronal tis-
sues, including endocrine organs [9]. For example, the
GABA-synthesizing enzyme glutamic acid decarboxylase
(GAD) was identified in rodent and human pancreatic
beta cells [10–13]. Recently, GABA was described to be
produced by growth hormone cells of the anterior pitu-
itary lobe [14]. Since GABAA/B receptor subunits were
reported to be expressed in these and other endocrine tis-
sues [15, 16], GABA may act as an auto-/paracrine factor
in these organs [14, 17].

GABA is also present in the female and male reproduc-
tive tracts. Thus, GAD was detected by immunohisto-
chemistry and other techniques in ovary and oviduct [18–
21]. While a role for GABA in the female gonad is not well
understood, a possible role of GABA in the oviduct is to
activate ejaculated spermatozoa, which possess GABA
receptors. In support of such a role, GABA leads to both
initiation of the acrosome reaction and increased sperm
motility [22–25]. These effects may be mediated via GABA
receptors since GABAA receptors were identified on hu-
man spermatozoa [26, 27] and GABAB receptors have been
found to be expressed by rat spermatozoa [16, 28].

A puzzling finding in this respect is that in addition to
GABA receptors, GABA appears to be present in the male
gonad. Since activation of testicular spermatozoa as a
physiological function can be ruled out, GABA must have
largely unexplored other intratesticular functions. The
evidence for testicular GABA stems from Northern blot
detection of GAD mRNA in rat [29] and mouse (nuclease
protection assay) [12] active GAD in hamster (enzymatic
assay) [29, 30] and mRNA/protein human testes [31]. Of
the two major forms of GAD (GAD65 and GAD67),
GAD67 and its splice variant GAD25, which, however, is
not enzymatically active, are expressed in human testis
[32]. Which testicular cells are able to synthesize GABA is

unfortunately not fully known. Studies locating GAD
mRNA suggested that the cellular sources of GABA may
reside within the tubular compartment in germ cells [20,
31], but functional GAD protein has to our knowledge not
been found. As mentioned above, GABA receptors are
present on ejaculated spermatozoa. Since GABA receptor
subunits have been identified by RT-PCR studies in
rodent testis [15, 16, 28, 33], it is at present unclear wheth-
er they correspond to the ones observed in spermatozoa
only, or whether other testicular cells may bear GABA re-
ceptors as well. The latter possibility is suggested by results
in the rat, in which the production of androgens by Leydig
cells was increased by GABA [34, 35], implying that these
endocrine cells contain functional GABA receptors.

In the present study, we attempted to clarify this issue
and have provided molecular details of sites of GABA
production, storage and receptor-bearing targets in rodent
and human testes.

Materials and Methods

Human Biopsies
Archival testicular biopsies from adult men (age range 22–44 years)

were analysed. The biopsies (n = 3) used for this study revealed normal
spermatogenesis with no or slight alteration. All biopsies had been
fixed in Bouin’s fixative and were embedded in paraffin. Sections
(5 Ìm) were cut and used for immunohistochemical staining as de-
scribed below. The evaluation of human specimens was approved by the
Ethics Committee of the Technical University of Munich, Germany.

Animals
Testes were obtained from adult (Sprague-Dawley, Wistar) male

rats (in total 29) and from adult (BALB/c) mice (in total 7; bred at the
Technical University of Munich, Germany). According to the animal
care guidelines, they were painlessly killed under ether anaesthesia by
exsanguination and testes were rapidly removed. Testes were also
obtained from adult male golden hamsters (n = 12) that had been
raised at the Instituto de Biologı́a y Medicina Experimental, Buenos
Aires, Argentina. Hamsters were housed in rooms at 23 B 2°C and
kept from birth in a long photoperiod (14:10 h light/dark, lights on
from 7.00 to 21.00 h). Pelleted food and tap water were provided ad
libitum. Hamsters were killed by decapitation and the testes were rap-
idly removed. The maintenance and treatment of the hamsters were in
accordance with the National Institute of Health Guide for the Care
and Use of Laboratory Animals and approved by a local Committee.

RNA Preparation and RT-PCR
Isolation of RNA from rodent testes, as well as RT and PCR for

GAD65/67, VIAAT/VGAT (vesicular inhibitory amino acid trans-
porter also known as vesicular GABA transporter, VGAT) and
GABA receptor subunits were performed as described elsewhere
[36]. Commercial human testicular cDNAs (pooled from 19 men;
Clontech Inc., Palo Alto, Calif., USA; one sample from Invitrogen,
Karlsruhe, Germany) were also used for PCR. Conditions of PCR
amplification consisted of 30, 35 or 40 cycles (94°C for 30 s, 55°C
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Table 1. Sequences of oligonucleotide
primers used in RT-PCR studies Species Size, bp Primer

GAD65 R 422 5)-CAAGTGGAAGCTGAACGGTGT-3)
5)-CTTCCAGAACTCGCAAACTAG-3)

M 445 5)-CTTCTTCCGGATGGTCATCTC-3)
5)-AGAGGTATTCTAAACTTAAGA-3)

GAD67 R, GH 440 5)-TGCAGTTCTTACTGGAGGTGG-3)
5)-GATGCTGTACATGTTGGATAT-3)

M 393 5)-CTTCTTCCGGATGGTCATCTC-3)
5)-ACGAGCAACATGCTATGGTCT-3)

Hum 624 5)-ATTCTTGAAGCCAAACAG-3)
5)-TAGCTTTTCCCGTCGTTG-3)

VIAAT/VGAT R, M 356 5)-CATTCAGGGCATGTTCGT-3)
5)-CTATGATGGACCAGGACT-3)

Hum 186 5)-GTATCTTGTACGTCGTGG-3)
5)-GGATGTTGATGACGAAGTGGG-3)

GABAA ·1 R, M 231 5)-CTACAGCAACCAGCTATACCC-3)
5)-GCTCTCTGTTTAAATACGTGG-3)

R (nested) 169 5)-AACTTAGGCCAGGGTGAC-3)
5)-GATTCCAAATAGCAGCGG-3)

Hum 357 5)-AGAGGTTATGCATGGGATGG-3)
5)-GATCTATTGATGTGGTGTGG-3)

·2 R, GH, M 282 5)-AAGGCTCCGTCATGATACAG-3)
5)-ACTAACCCCTAATACAGGC-3)

·3 R 418 5)-ACTTGCTTGGTCATGTTGTTGGG-3)
5)-TTTCTTCATCTCCAGGGCCTCTG-3)

M 418 5)-GACTTGCTTGGTCATGTTGTTGGG-3)
5)-CAGAGGCCCTGGAGATGAAGAAGA-3)

Hum 331 5)-GGTTCATAGCCGTCTGTTATGC-3)
5)-TTGTAGGTCTTGGTCTCAGTCG-3)

ß1 M 540 5)-ATGATGCATCTGCAGCCA-3)
5)-TGGAGTTCACGTCAGTCA-3)

Hum 344 5)-AGCAAACAAGACCAGAGTGC-3)
5)-AACATTCGGGACCACTTGTC-3)

ß2 Hum 424 5)-CATTGACATGTACCTGATGG-3)
5)-ATCAGTCAAGTCAGGGATGG-3)

ß3 R, GH, M 224 5)-AGCCAAGGCCAAGAATGATCG-3)
5)-TGCTTCTGTCTCCCATGTACC-3)

Á1 R 191 5)-TTTCTTACGTGACAGCAATGG-3)
5)-CATGGGAATCAGAGTAGATCC-3)

M 191 5)-TTTCTTACGTGACAGCAATGG-3)
5)-CATGGGAATGAGAGTGGATCC-3)

Á2 R 351 5)-GCAATGGATCTCTTCGTC-3)
5)-GTCCATTTTGGCAATGCG-3)

M 351 5)-GCAATGGATCTCTTTGTA-3)
5)-GTCCATTTTGGCAATGCG-3)

Hum 329 5)-CAGCGATGGATCTCTTTG-3)
5)-GTCCATTTTGGCAATGCG-3)

Á3 R, M 251 5)-TGTCGAAAGCCAACCATCAGG-3)
5)-GACTTGCACTCCTCATAGCAG-3)

GABAB R1 R, M, Hum 519 5)-GTACGTCTGGTTCCTCAT-3)
5)-AGATCATCCTTGGTGCTG-3)

R2 R, M 354 5)-CATCATCTTCTGCAGCAC-3)
5)-TCTGTGAAGTTGCCCAAG-3)

Hum 596 5)-ACCATCTCAGGAAAGACT-3)
5)-CCTTATCATCCTTGGAGG-3)

R = Rat; M = mouse; GH = golden hamster; Hum = human.
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for 30 s, 72°C for 60 s, followed by final extension for 5 min at 72°C.
Oligonucleotide primers, as specified in table 1, were synthesized
according to published sequences. Verification of cDNAs was
achieved by direct sequencing.

Immunohistochemistry
Testicular distribution of GAD65/67, VGAT, GABAA-·,

GABAA-·1 and GABAA-ß2/3 was examined in rat and human testes
using an avidin-biotin-peroxidase immunohistochemical method as
described previously [37, 38]. Rat testes and other tissues (from adult
Sprague-Dawley and Wistar rats) were fixed in Bouin’s solution and
embedded in paraffin. Archival testicular biopsies from men had
been fixed in Bouin’s fixative and embedded in paraffin. The follow-
ing specific antibodies/antisera were employed: rabbit polyclonal
antiserum to GAD65/67, which recognizes epitopes common to ei-
ther form (DPC Biermann, Bad Nauheim, Germany; dilution 1:500);
rabbit antiserum anti-VGAT (SySy Synaptic Systems GmbH, Göt-
tingen, Germany; dilution 1:750); rabbit polyclonal antiserum anti-
GABAA-·1 (Alomone Labs Inc., Jerusalem, Israel; dilution 1:750);
mouse monoclonal antibody anti-GABAA-ß2/3 (Upstate Biotech-
nology Inc., Lake Placid, N.Y., USA; dilution 1:500) [39]; mouse
monoclonal antibody anti-GABAA-· (Roche Diagnostics Inc., Mann-
heim, Germany; dilution 1:1,000); sheep monoclonal antibody anti-
GABAB-R1 (gift from Graham Disney and Fiona Marshall, Glaxo-
Wellcome R&D Inc., Stevenage, UK; dilution 1:1,000–1:500), and
sheep monoclonal antibody anti-GABAB-R2 (GlaxoWellcome R&D;
dilution 1:1,000–1:500). Sections incubated with buffer alone or
buffer containing mouse or rabbit normal (i.e. non-immune) serum,
respectively, served as controls for all samples. The sections were
examined with a Zeiss Axiovert photomicroscope (Zeiss, Ober-
kochen, Germany).

Western Blotting
Tissues from rat testis (Sprague-Dawley) were homogenized in

62.5 mM Tris-HCl buffer (pH 6.8) containing 10% sucrose and 2%
SDS by sonication, mercaptoethanol was added (10%), and the sam-
ples were heated (95°C for 5 min). Then, 15 Ìg of protein per lane
was loaded onto Tricine-SDS-polyacrylamide gels (12.5%), electro-
phoretically separated and blotted onto nitrocellulose as described
previously [40]. Samples were probed with the same GAD65/67 and
GABAA-ß2/3 antisera used for immunohistochemistry (incubation
overnight at 4°C, dilution 1:500). Immunoreactivity was detected
using peroxidase-labeled antisera (Dianova, Hamburg, Germany;
dilution 1:3,000) and enhanced chemiluminescence (Amersham
Buchler, Braunschweig, Germany), as described elsewhere [41].

GAD Assay
GAD assays were performed as described previously [42] by

using 14-C1-glutamic acid (Biotrend, Köln, Germany; specific activi-
ty 50–60 mCi/mmol). Rat testes and, as a positive control, cerebel-
lum, were homogenized for use in GAD assays. The activity was
expressed per microgram of protein. Protein samples of rat testes
heated to 95°C for 5 min served as negative controls. Results
obtained from testes are given as a percentage of activity determined
in the cerebellum. Results obtained were analysed statistically with a
computer program (Prism, GraphPad Software Inc., San Diego, Cal-
if., USA). We performed one-way analysis of variance by ANOVA
followed by Student-Newman-Keuls test for multiple comparisons
and Student’s t test. Data were expressed as mean B standard error
of the mean (SEM) and p ! 0.05 was considered significant.

Laser Microdissection and RT-PCR
Rat testes embedded in paraffin were cut into sections (5 Ìm) and

mounted onto a 1.35-Ìm thin polyethylene naphthalene membrane
pasted to a glass slide which had been pretreated with UV light for
30 min. The sections were deparaffinized and processed for haema-
toxylin staining. Laser microdissection (LMD) was performed as pre-
viously described [17, 43, 44]. In brief, employing a nitrogen laser of
the Robot-MicroBeam (P.A.L.M. GmbH Mikrolaser Technologie,
Bernried, Germany), groups of interstitial cells were circumscribed
and thus isolated from the surrounding tissue. This microdissected
sample was ejected from the object slide and catapulted directly into
the cap of a microfuge tube. Fifty microlitres of RNA stabilization
reagent (RNEasy Protect Mini-Kit, Qiagen, Hilden, Germany) were
added into the cap. Samples were frozen at –70°C until RNA extrac-
tion (RNEasy, Qiagen). RT followed by two nested PCR amplifica-
tions were performed. To test for specificity, in the consecutive sec-
tion, interstitial cells in a given area were eliminated by a few
directed laser shots, the area was circumscribed and the remaining
material was catapulted into the cap of a microfuge tube and used as
negative control in the RT-PCR assays.

Results

The Genes for GAD65/67 and VIAAT/VGAT Are
Expressed in the Testes of Rodents and Humans
RT-PCR followed by sequencing showed that genes of

GAD are expressed in the testes of rat, mouse, hamster
and human (fig. 1A). We detected GAD65 and GAD67 in
the testes of rat and mouse, while in human testes, only
GAD67 was found. The study in hamsters may have been
hampered due to the fact that oligonucleotide primers for
PCR corresponding to rat and murine primers, respec-
tively, were used because DNA sequences of the hamster
GAD isoforms were not known. However, partial se-
quences obtained from analysis of hamster testes and
brain indicated sequence homology to rat GAD67 (posi-
tion 690–721, GenBank accession number M76177). Us-
ing oligonucleotide primers targeted specifically for
VIAAT/VGAT (murine/human sequence), we obtained
positive results in rat, murine and human testes (fig. 1B).
With these oligonucleotide primers, VIAAT/VGAT was
not found in hamster. Western blots performed with rat
testicular homogenates and antiserum to GAD65/67
(fig. 1C) confirmed the presence of both GAD65 and
GAD67 in rat testis.

GAD Is Active in Rat Testis
Evidence for enzymatically active GAD in rat testis

was provided by measurements of 14C1-glutamic acid
decarboxylation. Tissue of the cerebellum was used as a
positive control (100%) and samples of cerebellum and
testes heated to 95°C for 5 min served as negative con-
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Fig. 1. Expression of GAD isoforms and
VIAAT/VGAT in testes of rat (R), mouse
(M), golden hamster (GH) and human
(Hum). A Ethidium bromide-stained aga-
rose gels depict results of RT-PCR for GAD.
GAD67 is expressed in the testis of all spe-
cies investigated. In addition, rat and mu-
rine testes also possess GAD65. PCR reac-
tions without template served as controls
(Co). B RT-PCR for VIAAT/VGAT in rat
(R), mouse (M) and human (Hum) testis.
Sequencing of RT-PCR products confirmed
their identity. C Western blot of rat (R) testis
probed with antiserum against GAD65/67
revealed the presence of both proteins.

Fig. 2. GABAA and GABAB receptor sub-
units in rat and human testes. Ethidium bro-
mide-stained agarose gels show results of
RT-PCR analyses of rat (A) and human (C)
testis. A In rat testis, GABAA receptor sub-
units ·1 (231 bp), ·2 (282 bp), ·3 (418 bp),
ß3 (224 bp), Á1 (191 bp), Á2 (351 bp) and Á3
(251 bp) and GABAB receptor subunits R1
(519 bp) and R2 (354 bp) were detected.
C The GABAA receptor subunits ·1 (357
bp), ·3 (331 bp), ß1 (344 bp), ß2 (424 bp)
and Á2 (329 bp), as well as GABAB receptor
subunits R1 (519 bp) and R2 (596 bp) are
present in human testis. B Western blots of
rat testis probed with an antiserum recogniz-
ing both GABAA-ß2 and 3 confirmed their
presence (ß2: 55,000 molecular mass; ß3:
57,000 molecular mass).

Table 2. Summary of RT-PCR results: distribution of GABA recep-
tor subunits in rat, mouse, hamster and human testis

Rat Mouse Hamster Human

GABA receptor subunit
·1 + + +
·2 + + +
·3 + + +
ß1 + +
ß2 +
ß3 + + +
Á1 + +
Á2 + +
Á3 + +
R1 + + +
R2 + + +

+ indicates PCR product of the corresponding subunit, which was
confirmed by sequencing.

trols. Testes of adult rats (n = 11) showed 3.35 B 0.161%
(mean B SEM) of the GAD activity obtained in cerebel-
lum. Heating of the samples completely reduced this val-
ue to background levels.

Identification of Testicular GABA Receptor Subunits
by RT-PCR and Western Blotting
Table 2 shows details of results obtained in rat, mouse,

hamster and human testes. In the case of rat testis,
GABAA receptor subunits ·1–3, ß3 and Á1–3 and GABAB

receptor subunits R1/2 are present (fig. 2A). Novel se-
quence information about GABAA-·2 obtained from
analysis of hamster testes (representing 2 independently
derived identical sequences) was submitted to GenBank
(accession number AF533532). This partial sequence
shows 97% homology with rat, 95% homology with
mouse and 84% homology with human GABAA-·2 at the
nucleotide level. Sequencing of 3 hamster GABAA-ß3 RT-
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Fig. 3. Localization of GAD65/67, VIAAT/VGAT and GABAA sub-
unit · in adult rat testis. Interstitial cells, presumably Leydig cells,
located between the seminiferous tubules (T) possess immunoreac-
tivity for GAD (A) and VIAAT/VGAT (B). Testicular sections of
adult rat probed with an antibody against GABAA-· also show inter-
stitial staining (C). Elongated spermatids were also immunoreactive
for GABAA-·1 (E) and GABAA-ß2/3 (F). No reaction is observed in
testis sections incubated with buffer or non-immune serum (not
shown) instead of the primary antibody (D). Bars = 50 Ìm.

Fig. 4. Example of an experiment using LMD of grouped interstitial
cells from a testicular section of an adult rat. A, B Consecutive testes
sections prior to and after LMD. T = Seminiferous tubule; BV =
blood vessel. Bars = 50 Ìm. In B, interstitial cells, presumably Leydig
cells, were dissected and used for RT-PCR. C Interstitial cells (IC)
possess mRNA for GABAA receptor subunit ·1 (169 bp). To show
specificity, these cells were selectively destroyed by laser shots prior
to LMD, and the remaining tissue was dissected, recovered and used
for RT-PCR (Co1). In addition, RT-PCR was performed without
adding a template (Co2).

PCR products revealed complete identity with the corre-
sponding rat sequence. Figure 2B depicts a Western blot
of rat testis probed with GABAA-ß2/3 antibody, showing
immunoreactive signals for both subunits. In human tes-
tis, RT-PCR results revealed that the GABAA receptor
subunits ·1/3, ß1/2 and Á2, as well as GABAB R1 and R2
(fig. 2C, table 2), are expressed.

Cellular Localization of GAD65/67, VIAAT/VGAT
and GABAA Receptor Subunits in Adult Rat Testes
To identify testicular sources of GAD, VIAAT/VGAT

and GABA receptors (GABAA-·, GABAA-·1 and
GABAA-ß2/3), immunohistochemistry was performed.
The GAD antiserum employed recognizes both GAD65
and GAD67. We found that cells in interstitial spaces of
rat testis were immunoreactive for GAD65/67 and
VIAAT/VGAT. Rat testis showed interstitial immuno-
staining with anti-GABAA-·, which does not distinguish
between GABAA-· subtypes. The staining pattern ob-
tained for GAD65/67, VIAAT/VGAT and GABAA-· was
robust and observed in almost all interstitial spaces in rat

Fig. 5. In human testes, interstitial cells located between seminifer-
ous tubules (T) are immunopositive for GAD (A) and GABAA-·1
(B). Bars = 50 Ìm.

testes (fig. 3A–C). Staining obtained with the antibody
against GABAA-ß2/3 and anti-GABAA-·1 (data not
shown) was less robust, but specific, and was also seen in
cells with the typical Leydig cell morphology and location.
All controls performed were negative (fig. 3E).

In addition, spermatids immunoreactive for GABAA-
·1 and GABAA-ß2/3 (data not shown, fig. 3D, E, F) were
seen inside the seminiferous tubules of rat testis.
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Rat interstitial cells, dissected by LMD from paraffin
sections of adult rat testes, were isolated and analysed by
RT-PCR. Figures 4A and B show consecutive testicular
sections, one of them after LMD (fig. 4B). Dissected sam-
ples, in which interstitial cells were selectively destroyed
by laser shots, served as negative controls. We designed
oligonucleotide primers for nested RT-PCR analysis for
GABAA-·1. The results revealed that interstitial cells of
adult rats express GABAA-·1 (fig. 4C) and are in line with
our immunohistochemical results, also indicating the
presence of a GABAA-· subunit.

Localization of GAD65/67 and GABAA Receptor
Subunit Proteins in Human Interstitial Cells
Immunohistochemistry was performed on sections of

human biopsies to investigate the cellular localization of
GAD, VIAAT/VGAT and GABA receptors. Consistent
with the results in rat, we found interstitial cells immuno-
reactive for GAD and GABAA-·1 (fig. 5A, B). Further-
more, weak immunoreactivity for GABAA-ß2/3 was seen
in the interstitium. Labelling was absent in all controls.
Successful immunohistochemical analysis of human sam-
ples with available antibodies against VIAAT/VGAT,
GABAB-R1 and GABAB-R1 was unfortunately not possi-
ble, like due to the suboptimal fixation/embedding condi-
tions of these samples.

Discussion

The current study, by identifying at the molecular level
the components of testicular GABA synthesis, storage and
its receptors, shows that a testicular GABAergic system
exists in the interstitial, i.e. endocrine, compartment of
the testes of rodents and humans.

Our results reveal that the crucial enzymes for GABA
synthesis are present in the testes of several species.
Marked species differences became apparent with respect
to the GAD forms. Thus, GAD65 and/or GAD67 were
found. We made no attempt to examine whether splice
variants are expressed, mainly because the previously
described testicular variant GAD25 [32] appears not to be
enzymatically active. Instead, testicular GAD65/67 forms
in the rat were enzymatically active in our study, a result
in line with previous studies in hamster testis using a com-
parable GAD assay technique [30]. The study in hamster
did not localize GAD to testicular cells, but other investi-
gators examining rat and human testes [20, 31] found
GAD mRNA in spermatids and germ cells. The tech-
niques employed were in situ hybridization and RT-PCR

techniques, while we are not aware of techniques which
localize the corresponding GAD protein with one excep-
tion. Our current study thus contrasts to these reports,
since we did not find immunoreactive GAD with an anti-
serum recognizing both GAD65 and GAD67 in the ger-
minal epithelium of the human, rat, mouse and hamster
testes, but rather in the interstitial compartment. The rea-
sons for these differences are currently not known, but we
speculate that either the abundance of GAD protein in the
tubular compartment is very low or that a splice variant,
including GAD25, may be present inside the seminifer-
ous tubules, which is not recognized by the antiserum
used. The staining pattern resulting from the use of the
antiserum to GAD65/67 was also found when, in addi-
tion, antiserum recognizing VIAAT/VGAT was used.
This further substantiates our conclusion that testicular
interstitial cells of all species examined may be able to
produce and store GABA.

The action of GABA requires GABA receptors. In-
deed, several GABAA and GABAB receptor subunits were
found in testes in the present and in previous studies. Our
results are largely in accord with a study performed in rat
testes. Akinci and Schofield [15] also found GABAA sub-
units ·1–3, ß3 and Á1/2. In contrast to their work, we did
not find GABAA subunits ß1/2 in rat testis. Additionally,
we identified GABAA subunit Á3, a subunit not reported
by Akinci and Schofield [15] to be present in rat testis.
Whether methodological distinctions or differences in cell
activity, hormonal or developmental state [45–47] may
account for these small discrepancies remains to be
shown. Our results concerning subunits of the GABAB

receptor in testis tally with RT-PCR studies made by He
et al. [28] in rat testis and extend these results to other
rodent species and human testis. Thus, testicular tissue of
different species contains mRNA of two distinct classes of
GABA receptors.

With both GABA-synthesizing/storing enzymes and
GABA receptors present in the testis, what is the role of
this non-neuronal GABAergic system in the male gonad?

A first possibility to be considered is regulation of
endocrine function, since interstitial cells bear GABA
receptors. Indeed, evidence for a role of GABA in the reg-
ulation of Leydig cell function has been provided.
GABAergic drugs (including benzodiazepines) and
GABA were reported to modulate basal and gonadotro-
phin-stimulated androgen production of Leydig cells in
rat [34, 35, 48]. Our immunohistochemical results indi-
cate that the majority of the testicular interstitial cells,
which are both sources and targets of GABA, are typical
Leydig cells. It is therefore possible that GABA may act as
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an autocrine or paracrine regulator of endocrine function
in the testis, a role as described for other endocrine
organs, including pancreatic islets [49, 50] or pituitary
[14, 17]. While the function of GABA produced in the
pituitary remains to be fully elucidated, GABA secreted
by pancreatic B cells serves as a paracrine inhibitory fac-
tor for glucagon production [51]. The targeted A cells of
the pancreatic islets express GABAA receptors.

A second possibility, which cannot be ruled out, is that
testicular GABA may participate in the maturation and
differentiation of germ cells. It is unknown whether
GABA produced by interstitial cells, as indicated by our
results, can reach the tubular compartment. However, it
was suggested that GABA could also be produced in this
compartment. Evidence for this assumption was the de-
tection of GAD mRNA in spermatids and germ cells [20,
31]. However, whether enzymatically active GAD is in-
deed translated from this mRNA is not known. Impor-
tantly, we did not find GAD protein in the tubular com-
partment in the present study. Rat and human germ cells
bear GABA receptors [22–27], and our immunohisto-
chemical studies reveal immunoreactivity for GABAA-·1
and GABAA-ß2/3 on rat spermatids at least in some testic-
ular sections. Whether these receptors are functional at
this developmental stage awaits future proof. Therefore,
information available at the present time does not allow
us to decide whether GABA might influence maturation
of germ cells and spermatids in the testis. Clear evidence,
however, was provided for functional GABA receptors in
ejaculated spermatozoa (acrosome reaction [23–25] and
regulation of human sperm motility [22]). The source of
GABA in this case resides within the oviduct. Thus, we
speculate that GABA receptors are expressed already dur-
ing germ cell development in preparation for later activa-
tion by GABA present in the oviduct [9, 18–21, 52–57].

A third possibility to be considered is that GABA may
serve as a trophic factor initiating and controlling cell pro-
liferation and/or differentiation in the interstitial com-
partment. Such an influence was shown for developing
neurons in the central nervous system [2, 3, 58]. In human
and mouse testes, Leydig cells proliferate, albeit at a low
level, throughout adulthood [59, 60]. It remains to be
shown whether GABA contributes to proliferation and/or
differentiation and function of Leydig cells.

While the physiological consequence of the presence of
GABA in the testis is currently not known, our data may
bear two potential clinical implications for humans. First,
the presence of a GABAergic system in the testis indicates
as yet unrecognized possible targets for drugs interacting
with GABA metabolism and/or GABA receptors, which

are widely used in humans. Unexplored side effects there-
fore are a possibility warranting further investigation.

Second, autoantibodies against GAD have been found
to be associated with several human diseases, including
insulin-dependent diabetes mellitus, neurological diseases
[61] and autoimmune syndromes [10, 62]. Patients with
autoimmune polyglandular syndrome type II, for exam-
ple, are reported to have autoantibodies against Leydig
cells and may present hypogonadism [63] or subclinical
symptoms [64]. Whether, aside from these diseases, au-
toantibodies to GAD may be associated with or even be
the cause of certain alterations of testicular function in
humans is a possibility which to our knowledge has not
yet been explored.

In summary, testicular interstitial cells produce GABA
and express GABA receptors. Since the components of
this novel GABAergic system exist in the endocrine com-
partment of the rodent and human testis, our work pre-
sented in this study prepares the ground for future studies
to analyse the physiological role and clinical implications
of this peripheral ‘neuroendocrine’ system.
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