1,560 research outputs found
Computational analysis of projectile impact resistance on aluminium (a356) curvilinear surface reinforced with carbon nanotubes (cnts) for applications in systems of protection
Computational tests for ballistic impact energy absorption were developed on A356/CNTs composite material with the goal of estimating the improvement of the material’s mechanical properties by the contribution of the CNTs [1]. For the implementation of computational tests on the material exposed to projectile impact, A356/CNTs was configured by means of generalized Hooke’s model for anisotropic materials [1] and Johnson-Cook’s model was used to determine material failure and propagation of energy [2]. A curvilinear surface (semi-spheres on a plaque) with an area of 23x23 cm and thickness of 12 mm was elaborated to represent the composite material. The impact on surface was done with a 9 mm projectile and the surface was developed with 4.5 mm radium semi-spheres. It was used a 0.3% of nanotube insertions on the composite total volume. The results indicated the plaque stopped the impact without drilling. Incidence of damage to wearer, as well as possibility of composite material improvement and the diffusion/dispersion analysis on the curvilinear surface was also done
Magneto-optical imaging of magnetic deflagration in Mn12-Acetate
For the first time, the morphology and dynamics of spin avalanches in
Mn12-Acetate crystals using magneto-optical imaging has been explored. We
observe an inhomogeneous relaxation of the magnetization, the spins reversing
first at one edge of the crystal and a few milliseconds later at the other end.
Our data fit well with the theory of magnetic deflagration, demonstrating that
very slow deflagration rates can be obtained, which makes new types of
experiments possible.Comment: 5 two-column pages, 3 figures, EPL styl
Quantum coherence enfeebled by classical uncertainties
The fundamental indication of the departure of quantum mechanics from the classical world is the so-called quantum coherence. Typically, we define it as the characteristic of systems which are in a superposition of states yielding interference patterns in certain kinds of experiments. In addition to its captivating philosophical implications, quantum coherence turned out to be a valuable tool in different areas, ranging from quantum information to biology, where it was used to describe several fundamental processes. Here, we go one step further to study how classical uncertainties in a mixture of similar states reduce quantum coherence in quantum scattering theory. To this end, we deal with different examples, all of them with roots in the widely studied Feynman's two-slit thought experiment. We finally propose an operational and intuitive definition of the concept of coherence length whose implications largely transcend the simplicity of the corresponding mathematical development, as it is demonstrated when applied to the analysis of some recent atomic and molecular processes.Fil: Barrachina Tejada, Raul Oscar. Comisión Nacional de EnergÃa Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Navarrete, F.. Universität Rostock; AlemaniaFil: Ciappina, M. F.. Technion - Israel Institute of Technology; Israe
Non-monotonic field-dependence of the ZFC magnetization peak in some systems of magnetic nanoparticles
We have performed magnetic measurements on a diluted system of gamma-Fe2O3
nanoparticles (~7nm), and on a ferritin sample. In both cases, the ZFC-peak
presents a non-monotonic field dependence, as has already been reported in some
experiments,and discussed as a possible evidence of resonant tunneling. Within
simple assumptions, we derive expressions for the magnetization obtained in the
usual ZFC, FC, TRM procedures. We point out that the ZFC-peak position is
extremely sensitive to the width of the particle size distribution, and give
some numerical estimates of this effect. We propose to combine the FC
magnetization with a modified TRM measurement, a procedure which allows a more
direct access to the barrier distribution in a field. The typical barrier
values which are obtained with this method show a monotonic decrease for
increasing fields, as expected from the simple effect of anisotropy barrier
lowering, in contrast with the ZFC results. From our measurements on
gamma-Fe2O3 particles, we show that the width of the effective barrier
distribution is slightly increasing with the field, an effect which is
sufficient for causing the observed initial increase of the ZFC-peak
temperatures.Comment: LaTeX file 19 pages, 9 postscript figures. To appear in Phys. Rev. B
(tentative schedule: Dec.97
Relaxation and Landau-Zener experiments down to 100 mK in ferritin
Temperature-independent magnetic viscosity in ferritin has been observed from
2 K down to 100 mK, proving that quantum tunneling plays the main role in these
particles at low temperature. Magnetic relaxation has also been studied using
the Landau-Zener method making the system crossing zero resonant field at
different rates, alpha=dH/dt, ranging from 10^{-5} to 10^{-3} T/s, and at
different temperatures, from 150 mK up to the blocking temperature. We propose
a new Tln(Delta H_{eff}/tau_0 alpha) scaling law for the Landau-Zener
probability in a system distributed in volumes, where Delta H_{eff} is the
effective width of the zero field resonance.Comment: 13 pages, 4 postscript figure
- …