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Quantum coherence enfeebled by classical uncertainties
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The fundamental indication of the departure of quantum mechanics from the classical world is the so-called
quantum coherence. Typically, we define it as the characteristic of systems which are in a superposition of
states yielding interference patterns in certain kinds of experiments. In addition to its captivating philosophical
implications, quantum coherence turned out to be a valuable tool in different areas, ranging from quantum
information to biology, where it was used to describe several fundamental processes. Here, we go one step
further to study how classical uncertainties in a mixture of similar states reduce quantum coherence in quantum
scattering theory. To this end, we deal with different examples, all of them with roots in the widely studied
Feynman’s two-slit thought experiment. We finally propose an operational and intuitive definition of the concept
of coherence length whose implications largely transcend the simplicity of the corresponding mathematical
development, as it is demonstrated when applied to the analysis of some recent atomic and molecular processes.
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I. INTRODUCTION

Quantum coherence is the instrumental signature that
makes the quantum world different from the classical one.
Besides its philosophical implications, it has proven to be
decisive in different areas, ranging from quantum information
to biology. Quantum coherence is indeed a challenging con-
cept to both learn and teach, which is not usually included in
courses and textbooks on quantum mechanics. Except for a
few exceptions [1–3], where this subject is treated briefly and
superficially, it is difficult to find any reference to coherence
in the index of the most well-known textbooks [4–12]. Some
books [1,13,14] describe the coherent state of a linear oscilla-
tor concerning electromagnetic fields [15]. But we must point
out that this does not cover every aspect of the broad concept
of quantum coherence, as we will show in this work, where we
will analyze its role in quantum scattering of spinless, massive
particles.
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It is not an overstatement to say that, for a complete under-
standing of scattering phenomena, the concept of coherence
should be one of the cornerstones to be clearly understood
by invoking quantum mechanics. In other words, one should
have to be able to satisfactorily answer elemental questions
as, for example, “what is the maximum separation between the
slits for Feynman’s two-slit thought experiment [16] to be suc-
cessful?” or “how is it possible that in a collision experiment
the projectile beam could be represented by a single plane
wave?”(it is worth to remind the reader here that when one
refers to a projectile beam in a quantum scattering experiment,
in fact the particles are always assumed to be thrown one-by-
one to the target, like in Feynman’s thought experiment and
Rutherford’s seminal experiment [17] of quantum scattering).
But chances are that most of us would fail. When analyzing
scattering processes, we simply lack the conceptual tools to
build a coherent answer to practically any questions related to
quantum coherence. Perhaps the main reason for this failure is
that while the standard syllabus of most introductory courses
only deals with pure quantum states; in real-world massive
particle scattering-experiments, such as those involved in the
two previous questions, a much more complex analysis is
required.

In 1927, von Neumann [18] introduced the concept of
“density operator” as a comprehensive way of incorporating
classical statistics into the description of real quantum sys-
tems. As it is shown in this article, this formalism easily
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leads to an operational (i.e., measurable) definition of quan-
tum coherence, while providing a simple demonstration of
the theorem of Van Cittert and Zernike [19,20] applied to
quantum scattering of massive particles, i.e., how coherence
builds up with time.

For a coherent collection of single-particle collision events,
its hallmark is given by its capacity to produce effects that
cannot be described within the classical framework. Interfer-
ence is the more noticeable and well known of these effects, as
exemplified by the widely studied Feynman’s two-slit thought
experiment. Yet, for this setup to function, i.e., for an interfer-
ence pattern to show up, the particle beam has to illuminate
the two slits in a coherent way. To this end, we introduced
a quantity, the so-called coherence length, such that for the
interference to be distinguishable, it has to be larger than or at
least comparable with the distance between the two slits. On
the contrary, if the coherence length is much smaller than the
distance between the slits, the beam will not be able to cover
both slits at the same time, and the interference pattern will
cease to exist [21].

Our way to quantify coherence through the coherence
length in the current work is purely operational (or can be even
seen as “ad hoc”) compared to more well-established theories
that quantify coherence for correlated systems and have been
comprehensively developed through the past decades. Never-
theless, the simplicity of the systems for which the coherence
length can be defined, allows us to explore Feynman’s two-
slit thought experiment in more detail, which configures a
paradigmatic example in quantum scattering theory. We think
the later is a small but qualitatively different contribution to
the understanding and quantification of coherence as a broad
subject.

Here it is worth to mention that, even though in this work
we quantify coherence in scattering processes through the
coherence length, our contribution should not be mistaken
with other ones which gauge coherence as a resource [22],
a concept which is central for quantum information theory,
with entanglement being the most paradigmatic case. Fur-
thermore, although scattering processes can also be studied
in terms of entanglement [23], the ontology of our subject
study is different to such investigations, as well as the way we
quantify coherence via the coherence length concept. Indeed,
our approach aims to contribute to the full understanding
of the collision between a massive spinless particle and an
unstructured target.

This article is organized as follows. In the following sec-
tion, we revisit the well-known Feynman’s two-slit thought
experiment, and explore it thoughtfully in steps of increasing
complexity. Let us point out that we manage to do so in simple
analytical terms. First, we consider the case where the two-slit
arrangement is reached by a plane wave. After exploring this
simple and standard representation of the thought experiment,
we analyze what changes when the two slits are not hit by
a plane wave but by a wave packet of varying width and
impact parameter. Finally, we move on to describing the more
realistic situation when we do not have total control of this
impact parameter, but can only assert a given probabilistic
distribution for it as, for instance, is the case when employing
a collimator for narrowing the width of an incoming beam of
particles. At this point, we show how, for quantum scattering

of massive particles in general, it is possible to give an oper-
ative definition of the coherence length and even get a simple
analytical expression for it. Finally, we show how the classical
uncertainties in the impact parameter of the pure states that
make up the quantum mixture, lead not only to a decrease
in coherence while, at the same time, to the appearance of
an effect analogous to the van Cittert-Zernike effect but for
quantum scattering of massive particles. It should be noted
that while it was predictable that classical uncertainties would
weaken the quantum coherence of a system in a mixed state,
the appearance of the van Cittert–Zernike effect in such simple
and understandable terms represents a remarkable bonus of
the present approach [24].

II. FEYNMAN’S TWO-SLIT THOUGHT
EXPERIMENT REVISITED

Let us consider the standard Feynman’s two-slit thought
experiment with particles [16]. It can be thought of as the typ-
ical setup used for instance by Rutherford in his famous work
[17], i.e., the projectile beam is assumed to be prepared in a
similar way, but replacing the target atom with two structure-
less neutral and spin-less target “slits.” If the projectile beam
was replaced by classical projectiles thrown one-by-one at the
target one would not find an interference pattern in a particle
detector behind the slits, while for quantum projectiles one
would expect to find a pattern which would share similarities
with that of Young’s two-slit experiment [25] of light waves.
Nevertheless, we must remind the reader that throughout the
work we are only referring to massive particles, not photons.
Furthermore, in this work we do not study beams of high-
density atomic, fermionic, or bosonic highly correlated gases
[26] but, as was mentioned in the Introduction, to a beam of
single-particle, noninteracting and nonoverlapping in space or
time projectiles.

We model the slits’ array by means of two Gaussian func-
tions [27] of width δ separated by a distance a, namely,

S(x) = S0

[
Gδ

(
x − a

2
, 0

)
+ Gδ

(
x + a

2
, 0

)]
, (1)

where (see the Appendix for more details)

Gs(x, L) =
(

2s2

π (s2 + iλL/π )2

)1/4

exp

(
− x2

s2 + iλL/π

)
.

(2)

Here, S0 defines a normalization constant that—for the time
being—plays no role in our analysis.

We are assuming that the distance a between the slits is
much larger than their width δ, so that no spurious aperture
would appear at the center of the two-slit arrangement

S2(x) = S2
0

[
G2

δ

(
x − a

2
, 0

)
+ G2

δ

(
x + a

2
, 0

)

+ 2 e−a2/2δ2
G2

δ (x, 0)

]

≈ S2
0

[
G2

δ

(
x − a

2
, 0

)
+ G2

δ

(
x + a

2
, 0

)]
. (3)
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FIG. 1. Probability distribution |φPW(x, L)|2 for a plane wave
traversing two Gaussian slits of width δ separated by a distance
a = 10 δ.

To assure this condition, in all examples and figures shown
throughout this article we will assume that a = 10 δ, for which
e−a2/2δ2 ≈ 2×10−22.

At a first sight, representing the two slits using Eqs. (1) and
(3) could appear unusual, although, as Feynman and Hibbs
[27] pointed out, “we do not know how to design metal parts for
our imaginary experiment which will produce such a gaussian
slit. However, there is no conceptual difficulty.”

Having defined our two-slit array, let us now bombard
it with a different kind of projectiles, namely, plane waves,
Gaussian wave packets, and mixed states.

III. INCOMING PLANE WAVE

We first consider a situation where the slits are reached by
a plane wave traveling along a perpendicular direction z with
velocity v. This represents the standard version of Feynman’s
two-slit thought experiment, as presented in most textbooks
on quantum mechanics. After passing through the slits, the
wave function can be written analytically by means of two
Gaussian wave packets [28]

φPW(x, L) = S0 eipL

[
Gδ

(
x − a

2
, 0

)
+ Gδ

(
x + a

2
, 0

)]
,

(4)

where λ = 2π h̄/mv is the de Broglie wavelength and L = vt
is the distance traveled by the wave along z in a time t .

In Fig. 1 the corresponding probability distribution

|φPW(x, L)|2 = S2
0

{∣∣∣∣Gδ

(
x − a

2
, L

)∣∣∣∣
2

+
∣∣∣∣Gδ

(
x + a

2
, L

)∣∣∣∣
2

+ 2 Re

[
Gδ

(
x − a

2
, L

)
G∗

δ

(
x + a

2
, L

)]}
,

(5)

FIG. 2. xy projection of Fig. 1.

is depicted. As expected, it shows the standard Young inter-
ference structure.

Let us note that the width of each Gaussian wave packet in
Eq. (1) grows with L as [28]

δ̃ =
∣∣∣∣δ + i

(
λL

πδ

)∣∣∣∣ =
√

δ2 +
(

λL

πδ

)2

. (6)

For small values of L, this width is much smaller than the
distance between the slits a, and therefore, both wave packets
spread independently without interfering with each other. On
the other hand, for δ̃ > a/2 (i.e., for λL/πa > δ/2) the wave
packets superimpose and the interference occurs. In particular,
for even larger values of L, δ̃ grows as λL/πδ, which explains
the conical shape of the waves’ spreading.

Finally, let us note that Eq. (5) can be written as

|φPW(x, L)|2 = 2 S2
0

∣∣∣∣Gδ

(√
x2 + a2

4
, L

)∣∣∣∣
2

×
[

cosh

(
2ax

δ̃2

)
+ cos

(
2λLax

πδ2δ̃2

)]
. (7)

If the distance L is large (i.e., in the far-field or Fraunhofer
limit), this probability distribution can be approximated by

|φPW(x, L)|2 ≈
√

2π S2
0

2δ

λL

[
1 + cos

(
2πax

λL

)]

=
√

2π S2
0

4δ

λL
cos2

(
πax

λL

)
, (8)

and, therefore, the spacing of the interference fringes is given
by the standard expression λL/a.

All these characteristics of the interference structure,
namely the conical shape of the waves’ spreading and the
appearance of fringes for δ̃ > a/2, with a spacing λL/a in the
far-field limit, can be easily seen in Fig. 2, which shows a
projection of Fig. 1 in the xy plane.
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IV. INCOMING PURE GAUSSIAN STATE

Let us now assume that the two-slit arrangement is reached
by a pure Gaussian state Gd (x − b, 0) of width d and which is
displaced by an impact parameter b with respect to the center
of the two slits, so that,

φb(x, 0) = S(x) Gd (x − b, 0)

= S0

[
Gδ

(
x − a

2
, 0

)
+ Gδ

(
x + a

2
, 0

)]
Gd (x−b, 0)

= S0

(
2

πδd

)1/2 [
exp

(
− (x − ã+/2)2

σ̃ 2
o

− ϕ+

)

+ exp

(
− (x − ã−/2)2

σ̃ 2
o

− ϕ−

)]
, (9)

where

ã± = 2bδ2 ± ad2

d2 + δ2
, (10)

σ̃ 2
0 = d2δ2

d2 + δ2
, (11)

ϕ± = (b ∓ a/2)2

d2 + δ2
. (12)

Note that in this case the slits are no longer located at ±a/2 but
at ã±/2. The use of a Gaussian two-slit array in Eq. (1) simpli-
fies all the calculations, but at the same time is responsible for
this distortion of the slits positions. To avoid this artifact, we
require that d � δ. By applying this restriction, we can make
Eq. (9) “separable,” in the sense that the x-dependence is now
restricted to the Gaussians of width δ exclusively,

φb(x, 0) ≈ S0

[
Gδ

(
x − a

2
, 0

)
Gd

(
b − a

2
, 0

)

+ Gδ

(
x + a

2
, 0

)
Gd

(
b + a

2
, 0

)]
. (13)

Its time evolution can be simply obtained as

φb(x, L) ≈ S0 eipL

[
Gδ

(
x − a

2
, L

)
Gd

(
b − a

2
, 0

)

+ Gδ

(
x + a

2
, L

)
Gd

(
b + a

2
, 0

)]
. (14)

Note that, since

|φb(x, L)|2 ≈ S2
0

{∣∣∣∣Gδ

(
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)
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(
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2

+
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(
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2
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)
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(
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2
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)∣∣∣∣
2

+ 2 e−a2/2d2
Re

[
Gδ

(
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2
, L

)

× G∗
δ

(
x + a

2
, L

)]∣∣∣∣Gd (b, 0)

∣∣∣∣
2}

(15)

represents that part of the incoming wave that is transmitted
through the filter S(x), it must not be normalized. Actually, the

transmission coefficient

T =
∫ ∞

−∞
|φb(x, L)|2dx , (16)

depends on the impact parameter b. For instance, a large trans-
mission is expected to occur for b ≈ ±a/2, while it would
approach zero for b → ±∞. Thus, we decided to use the
condition

lim
L→0

φb(x, L) = φb(x, 0) . (17)

Before going on with the analysis of Eq. (15), let us rewrite
it as follows:

|φb(x, L)|2 ≈ 2 S2
0

∣∣∣∣Gδ

(√
x2 + a2

4
, L

)
Gd

(√
b2 + a2

4
, 0

)∣∣∣∣
2

×
[

cosh

(
2ax

δ̃2
+ 2ba

d2

)
+ cos

(
2λLax

πδ2δ̃2

)]
,

(18)

where δ̃ was already defined in Eq. (6). Let us start
by considering the case b = 0. The resulting probability
distribution

|φ0(x, L)|2 ≈ 2 S2
0

∣∣∣∣Gδ

(√
x2 + a2

4
, L

)
Gd

(
a

2
, 0

)∣∣∣∣
2

×
[

cosh

(
2ax

δ̃2

)
+ cos

(
2λLax

πδ2δ̃2

)]
, (19)

is identical to |φ0(x, L)|2 in Eq. (5), except for the presence of
a multiplying factor

G2
d

(
a

2
, 0

)
=

(
2

πd2

)1/2

e−a2/2d2
. (20)

When d � a, the incoming wave “illuminates” both slits, and
the interference structure might be clearly observed. On the
other hand, for d much smaller than a, only the edges of a
comparatively narrow wave function transverse the slits, and
the transmission drastically drops. For instance, due to the
factor G2

d (a/2, 0), the probability distribution |φ0(x, L)|2 for
d = a/10 is 3×1022 smaller than for d = a, independently of
x and L. This means that the interference structure is still there,
and is identical to that of a plane wave, but is too faint to be
observed.

Now let us chose b = −a/2 so as to locate the incoming
pure state just on one of the slits. In Fig. 3 the probabil-
ity |φ−a/2(x, L)|2 at a distance L after the slits is shown.
In clockwise order starting from the top left, the panels of
Fig. 3 correspond to d/a = 10, 1, 0.75, and 0.25, respectively.
They are associated to e−a2/2d2 ≈ 0.9950, 0.6065, 0,4111, and
0,0003, respectively, in Eq. (15).

For d = 10 a, the width of the incoming Gaussian state is
so large in comparison with the distance between the slits that
the result is practically identical to that of a plane wave. On the
other hand, for d = a, the wave is mainly traversing one of the
slits. The contribution of the other slit is much smaller, but still
significant enough to produce a distinguishable interference
structure. This ingredient is hardly discernible for d = 3a/4,
and is practically absent for d = a/4.

043353-4



QUANTUM COHERENCE ENFEEBLED BY CLASSICAL … PHYSICAL REVIEW RESEARCH 2, 043353 (2020)

FIG. 3. Probability distribution for a Gaussian wave of width
d and impact parameter b = −a/2 traversing two Gaussian slits of
width δ separated by a distance a = 10 δ. In clockwise order starting
from the top left, the panels correspond to d/a = 10, 1, 0.75, and
0.25, respectively.

This result demonstrates that even if the beam is purely
coherent, the interference pattern might disappear if the width
of the incoming wave functions is much smaller than the
distance between the slits.

V. INCOMING MIXED STATE

In the previous section, the slits are reached by a collection
of freely moving single-particles which do not overlap with
each other either in space or time (i.e., single particles thrown
one-by-one, like in Feynman’s two-slit thought-experiment),
all of which were described by the same quantum state
Gd (x − b, 0). We say that this collection is, by definition,
purely coherent [29]. Note that we are considering an ex-
tremely restrictive condition on the collection to be purely
coherent: we are assuming that it is feasible to produce a
series of identical particles of mass m with the same impact
parameter d , the same amplitude, the same phase, and so on;
in other words, the same quantum state. It should be clear
that this is an abstraction, and that in any real situation some
kind of deviation between the different quantum states should
be unavoidable. Perhaps, it would be even more satisfactory
from a pedagogical point of view to define a “purely” coherent
collection by starting with a “partially” coherent state and then
considering the two opposite limits of pure coherence and
incoherence. But, since almost every textbook on quantum
physics deals with purely coherent systems (in most cases
without even acknowledging it), we also considered to be
more easygoing to start from this particular limit, as shown in
the previous section, and then move on towards the definition
of “partially coherent” or “mixed” states.

As was argued earlier, the fingerprint of a coherent collec-
tion of single-particle collision events is its ability to produce
effects that cannot be described in classical terms. The more
conspicuous and well known of this effect is that of “in-
terference,” as exemplified by Feynman’s two-slit thought
experiment which, in Feynman’s opinion [16]

... is impossible, absolutely impossible, to explain in any clas-
sical way, and which has in it the heart of quantum mechanics.
In reality, it contains the only mystery. We cannot make the
mystery go away by “explaining” how it works. We will just
tell you how it works. In telling you how it works we will
have told you about the basic peculiarities of all quantum
mechanics.

Feynman was obviously aware that some subtleties would
make the apparatus to be on an impossibly small scale to show
the effects we are interested in; and warns the reader not try
to set up this experiment. However, it is fair to say that at the
time of the publication of Feynman’s book, this supposedly
thought experiment had already been done by Jönsson in
1961 [30]. This early experiment was later refined by Merli
et al. [31] and Tonomura et al. [32]. Other realizations of
this famous experiment were performed since then (see, for
example, [33] and references therein). An atomic-size version
of Feynman’s two-slit thought experiment with electrons was
finally performed in 2007 by Chesnel et al. [34–36].

The main issue with these experiments, both thought and
real, is that the beam of electrons has to “illuminate” the two
slits coherently for the interference effect to pop up. Surpris-
ingly enough, even if the beam is purely coherent, that is if
each and every electron in the beam can be described by the
same wave function; even then the previous condition can fail.
This is what we demonstrated in the previous section. And
the reason for that is very simple: for the interference to be
observable, the “full” spatial width of the wave function has
to be larger than the distance between the slits, for allowing
the formation of an observable interference pattern.

Let us now consider the more realistic case of a mixed state
composed of wave functions φb(x, L), as in the previous sec-
tion, but where b is distributed according to a given classical
distribution, namely,

ρ0(x, L) =
∫

db G2
D(b − b0, 0) |φb(x, L)|2. (21)

For the classical probability we chose a Gaussian distribution
of width D and centered in some impact parameter b0. As
it is described in the Appendix, this integral can be easily
computed

ρ0(x, L) = S2
0

{∣∣∣∣Gδ

(
x − a

2
, L

)
G√

d2+D2

(
b0 − a

2
, 0

)∣∣∣∣
2

+
∣∣∣∣Gδ

(
x + a

2
, L

)
G√

d2+D2

(
b0 + a

2
, 0

)∣∣∣∣
2

+ 2 e−a2/2d2
Re

[
Gδ

(
x − a

2
, L

)
G∗

δ

(
x + a

2
, L

)]

×
∣∣∣∣G√

d2+D2 (b0, 0)

∣∣∣∣
2}

. (22)

Note that for D → 0, the Gaussian distribution G2
D(b − b0, 0)

in Eq. (21) becomes a representation of the Dirac delta func-
tion δ(b − b0), and therefore, ρ0(x, L) equals |φb0 (x, L)|2.
However, since D is usually a macroscopic length associated
to the collimator in an actual realization of Feynman’s two-slit
thought experiment, while d is of atomic dimensions, in the
rest of the article we will safely assume that D � d . In this
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FIG. 4. Probability distribution ρ0(x, L) for mixed states travers-
ing two Gaussian slits of width δ separated by a distance a = 10 δ

for D = 10 a. The left and right panels correspond to d = a and
d = a/10, respectively.

same line of thought, and without loss of generality, we will
also assume that b0 = 0. Thus, we obtain

ρ0(x, L) = S2
0

{∣∣∣∣Gδ

(
x − a

2
, L

)
GD

(
a

2
, 0

)∣∣∣∣
2

+
∣∣∣∣Gδ

(
x + a

2
, L

)
GD

(
a

2
, 0

)∣∣∣∣
2

+ 2 e−a2/2d2
Re

[
Gδ

(
x − a

2
, L

)
G∗

δ

(
x + a

2
, L

)]

×
∣∣∣∣GD(0, 0)

∣∣∣∣
2}

, (23)

which again is similar to |φb0 (x, L)|2, but with the width d
replaced by D, except for the factor e−a2/2d2

, which remains
unchanged. This means that D does not seem to play any sig-
nificant role in the appearance or not of the interference effect.
This is again controlled by the width d of each individual wave
function. Let us see this with an example. In Fig. 4 we plot the
probability distribution ρ0(x, L) for mixed states traversing
two Gaussian slits of width δ separated by a distance a = 10 δ

for D = 10 a. The left and right panels correspond to d = a
and d = a/10, respectively.

Note that in the right panel, for d = a/10, each wave in
the ensemble might at the most traverse one slit, but not both;
and therefore it is incapable of producing any distinguishable
interference structure. On the other hand, in the left panel, the
width d of each wave in the mixed state is of the order of the
separation a between the slits. Thus, some wave functions in
the mixed states, namely those with small values of the impact
parameter b, can hit both slits, and the result is practically
identical to that of a plane wave. In other words, the appear-
ance or disappearance of the interference pattern depends on
whether the width d of each wave in the mixed state is larger
(or equal), or much smaller than the distance between the slits,
respectively.

VI. VAN CITTERT–ZERNIKE EFFECT

In the previous section, we saw that under particular cir-
cumstances, the interference structure disappears. As it was
just explained, this occurs whenever the width d of the in-
coming states is much smaller than the two-slit separation a.
Now, let us consider the case when this same wave is allowed

to travel a given distance L0 before reaching the two-slit array.
In this case, the initial Gaussian state Gd (x − b, 0) should be
replaced by Gd (x − b, L0), so that

ρL0 (x, L) =
∫

db G2
D(b, 0) |φ̃b(x, L)|2 , (24)

with

φ̃b(x, L) = S0 eipL

[
Gδ

(
x − a

2
, L

)
Gd

(
b − a

2
, L0

)

+ Gδ

(
x + a

2
, L

)
Gd

(
b + a

2
, L0

)]
. (25)

If we blindly rely on the results of the previous section, we
could easily assume that the appearance or not of interference
might depend on the relationship between the width

d̃ =
√

d2 +
(

λL0

πd

)2

, (26)

of each individual wave Gd (x − b, L0) when reaching the
slits, and the separation a between these slits. In fact, this is
what we observed in all the cases discussed up to this point.
However, if we actually perform the integral on b by using the
formulas in the Appendix, we obtain

ρL0 (x, L) = S2
0

{∣∣∣∣Gδ

(
x − a

2
, L

)
GD

(
a

2
,

DL0

d

)∣∣∣∣
2

+
∣∣∣∣Gδ

(
x + a

2
, L

)
GD

(
a

2
,

DL0

d

)∣∣∣∣
2

+ 2 e−a2/2	2
Re

[
Gδ

(
x − a

2
, L

)
G∗

δ

(
x + a

2
, L

)]

×
∣∣∣∣GD

(
0,

DL0

d

)∣∣∣∣
2 }

, (27)

with

	 =
√

d2 +
(

λL0

πD

)2

, (28)

and the result is not the one we assumed. Instead, we find
that the interference occurs, not when the width d̃ of each
individual wave function is larger or at least comparable with
a, but whenever the characteristic length is. The difference
between d̃ and 	 seems to be almost insignificant since it only
amounts to replacing d by D in the denominator of the second
term, although a closer look demonstrates that it is extremely
relevant.

We will call this quantity 	 the coherence length of the
collection of scattering events (along the arbitrary direction
x). It is clear that it provides a measurement of the coherence
of the quantum system under consideration. Of course, this
definition depends on multiple factors. For instance, depend-
ing on the detector, it should be possible to actually observe
an interference pattern for slits separations larger than 	. Thus,
the above definition of 	 has a certain degree of vagueness and
arbitrariness that, on the other hand, is inevitable. Perhaps,
it would be more appropriate to multiply it by a factor that
might depend on the experimental setup, geometry, and so
on. However, these subtleties do not affect the development
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FIG. 5. Probability distribution ρL0 (x, L) for mixed states
traversing two Gaussian slits of width δ separated by a distance
a = 10 δ for D = 10 a and d = a/10, for different values of L0. In
clockwise order starting from the top left, the panels correspond to
λL0/πa2 = 0, 0.1, 4, and 10, respectively.

and conclusions of the present article, and therefore we will
maintain the previous definition.

Let us first note that, as we stated in a previous section,
in Eq. (27) we assumed that the classical uncertainty D (as
related to the collimator’s characteristic dimensions) is much
larger than the quantum mechanical uncertainty d of each
wave function in the collection and that b0 = 0. We made
these assumptions for the sake of simplicity, even though the
general case for arbitrary values of D and b0 can be analyti-
cally evaluated.

Now, while in the Fresnel limit (i.e., for L0 ≈ 0), we
recover the same results of the previous section, where D
plays a minimal role, the appearance of this classical uncer-
tainty becomes strongly dominant for very large values of L0

(Fraunhofer limit), namely,

	 ≈ λL0

πD
. (29)

Actually, if we compare this expression with that of the indi-
vidual wave functions, d̃ ≈ λL0/πd , we immediately notice
that the presence of the classical uncertainty D dramatically
reduces the coherence of the quantum system by a factor d/D.
This result represents indeed the Van Cittert–Zernike effect
of Optics applied to quantum particles, and gives meaning
to the title of the present work, by showing that the classical
uncertainty, characterized by the aperture D of the collimator,
reduces the quantum uncertainty, which is represented by 	

instead of d̃ .
This result is exemplified in Fig. 5, where we consider a

beam of wave packets traversing a collimator and traveling
a distance L0 until reaching a two-slit arrangement of width
δ separated by a distance a = 10 δ. The initial width of the
wave packets and that of the collimator are d = a/10 and
D = 10 a, respectively. In clockwise order starting from the
top left, the panels correspond to λL0/πa2 = 0, 0.1, 4, and
10, respectively. In the first case, the coherence length 	 is
much smaller than the distance a between the slits, and no

interference structure is formed. This situation is identical to
that of the right-side panel in Fig. 4. In the second panel in
clockwise order λL0/πa2 = d/a. If the naive analysis before
the Eq. (27) were correct (which it is not), the full interference
structure should already be seen. But this does not happen.
The reason, as it was already explained, is that even though
the width d̃ of each wave is already equal to the separation a
between the slits, the classical uncertainty D enfeebles the co-
herence length 	 by a factor d/D and, since it is much smaller
than a, the interference does not occur. In the third panel in
clockwise order, corresponding to a case where 	 ≈ 0.4a, a
barely discernible interference structure might be observed.
Finally, in the fourth panel, 	 is equal to the width a between
the slits, and the interference fringes are fully developed.

Let us point out that since the coherence length 	, Eq. (28),
depends on the momentum of the incident particles only
through its wavelength λ, it is similar to what would be ex-
pected in the case of electromagnetic waves. Thus, our version
of Feynman’s thought experiment is identical to the demon-
stration proposed by Thomas Young in 1807 [25], and is not
different from the techniques used to measure the coherence
of sunlight on Earth. However, since both the diameter D of
the Sun and its distance L0 to the Earth is obviously fixed,
what is varied in these experiments (see, e.g., [37]) is the
distance a between the slits, observing that the interference
disappears when a is greater than a coherence length 	 of some
few tens of nanometers.

Let us finally consider the case of a collision experiment.
It has been usually assumed that the wavelength λ of the
incoming projectiles’ beam (i.e., electrons, positrons, ions,
atoms, or molecules), and the macroscopic collimator’s width
D and flight distance L0 in the accelerator and focusing sec-
tion of standard equipments, are such that the corresponding
coherence length 	 is always much larger than the size a
of the atoms or molecules in the target chamber. Therefore,
it has always been assumed that when reaching the target,
the projectile’s mixed state can be represented by a single
plane wave. However, some recent experiments [38] showed
that this is not always the case (see, e.g., [39] and refer-
ences therein). Actually, by changing the distance L0 and the
width D in the experimental setup, it has been possible to
manipulate the coherence length 	 between a mixed (	 < a)
and a coherent situation (	 � a), as shown in the first and
fourth panels of Fig. 5. These results have put into question
a basic assumption of the standard scattering theory (namely
that 	 � a), and asked for new experimental and theoretical
approaches [40,41] to the analysis of collision processes. We
will not explore this phenomenon any further in this article.
For a far more comprehensive theoretical discussion, we refer
the reader to some recent publications [42,43].

VII. CONCLUSION

In this work, we performed a formal analysis on how to
incorporate concepts of quantum coherence in scattering pro-
cesses employing the coherence length. Its definition allowed
us to both describe qualitatively and also quantify the influ-
ence of the classical experimental context in the observation
of quantum mechanical effects, through a detailed analysis
of Feynman’s two-slit thought experiment, which is a central
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example in quantum scattering theory. We thoughtfully ex-
plored the problem in steps of increasing complexity, all of
them in simple analytical terms, which is useful for both
expanding the understanding of the subject as well as con-
tributing to its pedagogy.

First, with respect to the advance in pedagogical grounds
made by this work, we expect that, based on the concepts
and notions provided in this contribution, a reader would be
now in the position to respond coherently the basic questions
like what is the maximum separation between the slits for
Feynman’s two-slit thought experiment with particles to be
successful [of the order of the coherence length 	 in Eq. (28)],
or when is it possible to represent the projectile beam by a
single plane wave in a collision experiment (which will be a
suitable description when the coherence length is larger than
the size of the atomic or molecular targets).

Finally, regarding our contribution to the benefits of the
subject itself, we have to mention that we demonstrated how,
for a mixed state, the classical uncertainties in the impact
parameter of its pure state constituents lead to a decrease of
the coherence and the appearance of an effect similar to the
van Cittert–Zernike effect, but for the quantum scattering of
massive particles. It is worth to notice that, while it was pre-
dictable that classical uncertainties would wash out quantum
effects of a system in a mixed state, the appearance of this
effect in such simple and understandable fashion is a clear
advantage of the present theoretical development [24].
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APPENDIX

Let us consider the Gaussian wave function

Gs(x, L) =
(

2s2

π (s2 + iλL/π )2

)1/4

e−x2/(s2+iλL/π ). (A1)

The corresponding probability reads

|Gs(x, L)|2 =
(

2

π (s2 + (λL/πs)2)

)1/2

e−2x2/[s2+(λL/πs)2].

(A2)

Some simple properties are

G∗
s (x, L) = Gs(x,−L) and Gs(−x, L) = Gs(x, L). (A3)

On the other hand, the integral of a product of an arbitrary
number of them reads∫ ∞

−∞

N∏
n=1

Gsn (x−an, Ln) dx = √
π 
 e(
/h)2

N∏
n=1

Gsn (an, Ln),

(A4)

with

1


2
=

N∑
n=1

1

sn
2 + iλLn/π

and
1

h
=

N∑
n=1

an

sn
2 + iλLn/π

.

(A5)

In particular, ∫ ∞

−∞
|Gs(x − a, L)|2 dx = 1, (A6)

as expected.
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