183 research outputs found

    Posterior reversible encephalopathy syndrome in a child with cyclical vomiting and hypertension: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Posterior reversible encephalopathy syndrome is characterized by headache, nausea and vomiting, seizures and visual disturbances. It has certain characteristic radiological features, which allow diagnosis in the appropriate clinical setting and enable appropriate clinical therapy to be instituted.</p> <p>Case presentation</p> <p>A 10-year-old Caucasian girl who was hospitalized due to recurrent vomiting was diagnosed as having posterior reversible encephalopathy syndrome after an initial diagnosis of cyclical vomiting and hypertension was made.</p> <p>Conclusion</p> <p>Posterior reversible encephalopathy syndrome is a rare disorder in children. Early recognition of characteristic radiological features is key to the diagnosis as clinical symptoms may be non-specific or mimic other neurological illnesses. To the best of our knowledge this is the first case to report an association between posterior reversible encephalopathy syndrome, cyclical vomiting and hypertension. Furthermore, in this case, the resolution of the abnormalities found on magnetic resonance imaging over time did not appear to equate with clinical recovery.</p

    Interaction of classical swine fever virus with dendritic cells

    Get PDF
    Functional disruption of dendritic cells (DCs) is an important strategy for viral pathogens to evade host defences. Monocytotropic viruses such as classical swine fever virus (CSFV) could employ such a mechanism, since the virus can suppress immune responses and induce apoptosis without infecting lymphocytes. Here, CSFV was shown to infect and efficiently replicate in monocyte- and in bone marrow-derived DCs. Interestingly, the infected DCs displayed neither modulated MHC nor CD80/86 expression. Stimulation of DCs with IFN-/TNF- or polyinosinic¿polycytidylic acid (pIC) induced phenotypic maturation with increased MHC and CD80/86 expression, both with mock-treated and infected DCs. In addition, the T cell stimulatory capacity of CSFV-infected DCs was maintained both in a polyclonal T cell stimulation and in specific antigen-presentation assays, requiring antigen uptake and processing. Interestingly, similar to macrophages, CSFV did not induce IFN- responses in these DCs and even suppressed pIC-induced IFN- induction. Other cytokines including interleukin (IL)-6, IL-10, IL-12 and TNF- were not modulated. Taken together, these results demonstrated that CSFV can replicate in DCs and control IFN type I responses, without interfering with the immune reactivity. These results are interesting considering that DC infection with RNA viruses usually results in DC activation

    The Mast Cell Degranulator Compound 48/80 Directly Activates Neurons

    Get PDF
    Background Compound 48/80 is widely used in animal and tissue models as a “selective” mast cell activator. With this study we demonstrate that compound 48/80 also directly activates enteric neurons and visceral afferents. Methodology/Principal Findings We used in vivo recordings from extrinsic intestinal afferents together with Ca++ imaging from primary cultures of DRG and nodose neurons. Enteric neuronal activation was examined by Ca++ and voltage sensitive dye imaging in isolated gut preparations and primary cultures of enteric neurons. Intraluminal application of compound 48/80 evoked marked afferent firing which desensitized on subsequent administration. In egg albumen-sensitized animals, intraluminal antigen evoked a similar pattern of afferent activation which also desensitized on subsequent exposure to antigen. In cross-desensitization experiments prior administration of compound 48/80 failed to influence the mast cell mediated response. Application of 1 and 10 µg/ml compound 48/80 evoked spike discharge and Ca++ transients in enteric neurons. The same nerve activating effect was observed in primary cultures of DRG and nodose ganglion cells. Enteric neuron cultures were devoid of mast cells confirmed by negative staining for c-kit or toluidine blue. In addition, in cultured enteric neurons the excitatory action of compound 48/80 was preserved in the presence of histamine H1 and H2 antagonists. The mast cell stabilizer cromolyn attenuated compound 48/80 and nicotine evoked Ca++ transients in mast cell-free enteric neuron cultures. Conclusions/Significance The results showed direct excitatory action of compound 48/80 on enteric neurons and visceral afferents. Therefore, functional changes measured in tissue or animal models may involve a mast cell independent effect of compound 48/80 and cromolyn

    Dual alpha2C/5HT1A receptor agonist allyphenyline induces gastroprotection and inhibits fundic and colonic contractility

    Get PDF
    Allyphenyline, a novel α2-adrenoceptor (AR) ligand, has been shown to selectively activate α2C-adrenoceptors (AR) and 5HT1A receptors, but also to behave as a neutral antagonist of α2A-ARs. We exploited this unique pharmacological profile to analyze the role of α2C-ARs and 5HT1A receptors in the regulation of gastric mucosal integrity and gastrointestinal motility

    Transient Gastric Irritation in the Neonatal Rats Leads to Changes in Hypothalamic CRF Expression, Depression- and Anxiety-Like Behavior as Adults

    Get PDF
    A disturbance of the brain-gut axis is a prominent feature in functional bowel disorders (such as irritable bowel syndrome and functional dyspepsia) and psychological abnormalities are often implicated in their pathogenesis. We hypothesized that psychological morbidity in these conditions may result from gastrointestinal problems, rather than causing them.Functional dyspepsia was induced by neonatal gastric irritation in male rats. 10-day old male Sprague-Dawley rats received 0.1% iodoacetamide (IA) or vehicle by oral gavage for 6 days. At 8-10 weeks of age, rats were tested with sucrose preference and forced-swimming tests to examine depression-like behavior. Elevated plus maze, open field and light-dark box tests were used to test anxiety-like behaviors. ACTH and corticosterone responses to a minor stressor, saline injection, and hypothalamic CRF expression were also measured.Behavioral tests revealed changes of anxiety- and depression-like behaviors in IA-treated, but not control rats. As compared with controls, hypothalamic and amygdaloid CRF immunoreactivity, basal levels of plasma corticosterone and stress-induced ACTH were significantly higher in IA-treated rats. Gastric sensory ablation with resiniferatoxin had no effect on behaviors but treatment with CRF type 1 receptor antagonist, antalarmin, reversed the depression-like behavior in IA-treated ratsThe present results suggest that transient gastric irritation in the neonatal period can induce a long lasting increase in depression- and anxiety-like behaviors, increased expression of CRF in the hypothalamus, and an increased sensitivity of HPA axis to stress. The depression-like behavior may be mediated by the CRF1 receptor. These findings have significant implications for the pathogenesis of psychological co-morbidity in patients with functional bowel disorders

    Effects and mechanisms of auricular electroacupuncture on gastric hypersensitivity in a rodent model of functional dyspepsia

    Get PDF
    Background Functional dyspepsia (FD) is a common functional gastrointestinal disease, and abdominal pain is one of the main symptoms. The aim of this study was to explore the effects and mechanisms of auricular electro-acupuncture (AEA) on gastric hypersensitivity in a rodent model of FD. Methods Ten-day-old pups were gavaged with 0.2 ml of 0.1% iodoacetamide daily for 6 days. AEA at the “stomach” point with different parameters or sham-EA was performed on 8-week-old animals. Gastric sensitivity to gastric distention was measured under different conditions. Autonomic functions were assessed from the spectral analysis of heart rate variability (HRV) derived from the electrocardiogram. Naloxone was injected intraperitoneally before AEA to explore the opioid mechanism. Gastric emptying was measured at the end of the study. Results 1) Gastric sensitivity to gastric distention was higher in the FD rats. AEA with parameters of 0.1s on, 0.4s off, 100Hz, 0.3ms and 0.4–0.5mA, but not other parameters or sham-EA, decreased gastric hypersensitivity in the FD rats. Naloxone did not block the effect of AEA. 2) Lower vagal activity and higher sympathovagal ratio were noted in the FD rats, compared with the controls. AEA increased vagal activity and improved sympathovagal imbalance. Conclusions AEA ameliorates gastric hypersensitivity in FD rats and this effect may be attributed to the improvement of sympathovagal balance.Yeshttp://www.plosone.org/static/editorial#pee

    The Role of Proteasome Beta Subunits in Gastrin-Mediated Transcription of Plasminogen Activator Inhibitor-2 and Regenerating Protein1

    Get PDF
    The hormone gastrin physiologically regulates gastric acid secretion and also contributes to maintaining gastric epithelial architecture by regulating expression of genes such as plasminogen activator inhibitor 2 (PAI-2) and regenerating protein 1(Reg1). Here we examine the role of proteasome subunit PSMB1 in the transcriptional regulation of PAI-2 and Reg1 by gastrin, and its subcellular distribution during gastrin stimulation. We used the gastric cancer cell line AGS, permanently transfected with the CCK2 receptor (AGS-GR) to study gastrin stimulated expression of PAI-2 and Reg1 reporter constructs when PSMB1 was knocked down by siRNA. Binding of PSMB1 to the PAI-2 and Reg1 promoters was assessed by chromatin immunoprecipitation (ChIP) assay. Subcellular distribution of PSMB1 was determined by immunocytochemistry and Western Blot. Gastrin robustly increased expression of PAI-2 and Reg1 in AGS-GR cells, but when PSMB1 was knocked down the responses were dramatically reduced. In ChIP assays, following immunoprecipitation of chromatin with a PSMB1 antibody there was a substantial enrichment of DNA from the gastrin responsive regions of the PAI-2 and Reg1 promoters compared with chromatin precipitated with control IgG. In AGS-GR cells stimulated with gastrin there was a significant increase in the ratio of nuclear:cytoplasmic PSMB1 over the same timescale as recruitment of PSMB1 to the PAI-2 and Reg1 promoters seen in ChIP assays. We conclude that PSMB1 is part of the transcriptional machinery required for gastrin stimulated expression of PAI-2 and Reg1, and that its change in subcellular distribution in response to gastrin is consistent with this role

    Marsupialisation einer Tornwaldt'schen Zyste mittels CO2-Laser über eine flexible Faser

    No full text
    corecore