2,122 research outputs found
TB128: Beauveria bassiana for Control of Colorado Potato Beetle (Coleoptera: Chrysomelidae) in Maine
Beauveria bassiana (Balsamo) Vuill. (Bb), a fungal pathogen of the Colorado potato beetle has been used to control CPB in Europe. Preliminary studies in the United States gave promising results for CPB control by using the fungus. Based on these studies, a three-year pilot program was initiated to evaluate the potential for using Bb o control the Colorado potato beetle in the U.S. We report herein on the results obtained in southern Maine from using this mycoinsecticide to control the beetle.https://digitalcommons.library.umaine.edu/aes_techbulletin/1064/thumbnail.jp
HIFiRE Direct-Connect Rig (HDCR) Phase I Ground Test Results from the NASA Langley Arc-Heated Scramjet Test Facility
The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been identified
Optimal spectral nudging for global dynamic downscaling
AbstractThis study analyzes a method to construct a homogeneous, high-resolution global atmospheric hindcast. The method is the spectral nudging technique which was applied to a state-of-the-art general circulation model (ECHAM6, T255L95). Large spatial scales of the global climate model prognostic variables were spectrally nudged towards a reanalysis data set (NCEP1, T62L28) for the last decades. The main idea is the addition of dynamically consistent regional weather details to the coarse grid NCEP1 reanalysis. A large number of sensitivity experiments were performed, using different nudging e-folding times, vertical profiles, wave numbers, and variables. Comparisons with observations and several reanalyses showed a high dependency on the variations of the nudging configuration. At the global scale, the accordance is very high for extra-tropical regions and lower in the tropics. A wave number truncation of 30, a relatively short e-folding time of 50 min and a plateau-shaped nudging profile applied only to divergence and vorticity generally yielded the best results. This is one of the first global spectral nudging hindcast studies and the first applying an altitude-dependent profile to selected prognostic variables. The method can be applied to reconstruct the history of extreme events such as intense storms in the context of ongoing climate change
Uso de microarrays para a análise do perfil transcricional em polpa de maçã cv. Gala frente ao armazenamento refrigerado e ao uso do 1-metilciclopropeno.
O presente trabalho utilizou a técnica de microarrays para o estudo da influência do 1-metilciclopropeno (1-MCP) e do AR sobre o perfil transcricional de polpa de maçã 'Gala' armazenada por 60 dias
The backbone of the climate network
We propose a method to reconstruct and analyze a complex network from data
generated by a spatio-temporal dynamical system, relying on the nonlinear
mutual information of time series analysis and betweenness centrality of
complex network theory. We show, that this approach reveals a rich internal
structure in complex climate networks constructed from reanalysis and model
surface air temperature data. Our novel method uncovers peculiar wave-like
structures of high energy flow, that we relate to global surface ocean
currents. This points to a major role of the oceanic surface circulation in
coupling and stabilizing the global temperature field in the long term mean
(140 years for the model run and 60 years for reanalysis data). We find that
these results cannot be obtained using classical linear methods of multivariate
data analysis, and have ensured their robustness by intensive significance
testing.Comment: 6 pages, 5 figure
- …