81 research outputs found

    Renal cell carcinoma incidence rates and trends in young adults aged 20-39 years

    Get PDF
    Background: The burden of renal cell carcinoma (RCC) in young adults received marginal attention. We assessed contemporary gender, race and stage-specific incidence and trends of RCC among young adults (20-39 years-old) in the United States.Methods: Within Surveillance, Epidemiology, and End Results database (2000-2016), patients aged 20-39 years with histologically confirmed RCC were included. Age-standardized incidence rates (ASR per 100,000 person-years) were estimated. Temporal trends were calculated through joinpoint regression analyses to describe the average annual percent change (AAPC).Results: From 2000-2016, 7767 new RCC cases were recorded (ASR 0.6, AAPC + 5.0 %, p < 0.001). ASRs were higher in males than in females (0.7 and 0.5, respectively) and increased significantly in both genders (AAPC + 5.0 % and + 4.7 % both p < 0.001, respectively). Non-Hispanic American Indian/Alaska Native had the highest incidence (ASR 1.0) vs. non-Hispanic Asian or Pacific Islander the lowest (ASR 0.3). ASRs significantly increased in all ethnic groups. T1aNOMO and T1bNOMO stages showed the highest incidence and increase (ASR 0.3, AAPC + 5.9 %, p < 0.001 and ASR 0.1, AAPC + 5.7 %, p < 0.001, respectively). Also regional and distant stages increased (AAPC + 3.7 %, p = 0.001 and AAPC + 1.5 %, p = 0.06). The most frequent tumor characteristics were G2 (44.4 %, ASR 0.3, AAPC + 6.3 %, p < 0.001) and G1 (13.1 %, ASR 0.1, AAPC + 1.1 %, p = 0.2), as well as clear cell histology (54.8 %, ASR 0.3, AAPC + 7.6 %, p < 0.001).Conclusions: RCC in young adults is rare, but increasing. This is mainly due to T1aN0M0 tumors. Nonetheless, also regional diseases are significantly increasing. Differences between ethnic groups exist and may warrant further research

    Metabolic syndrome predicts worse perioperative outcomes in patients treated with partial nephrectomy for renal cell carcinoma

    Get PDF
    OBJECTIVE: To test the association between metabolic syndrome (MetS) and its components (high blood pressure, body mass index [BMI] 65 30, altered fasting glucose, low high-density lipoprotein cholesterol and high triglycerides) on perioperative outcomes after partial nephrectomy (PN). METHODS: Within the National Inpatient Sample database (2000-2015) we identified all PN patients. First, temporal trends of MetS were reported. Second, the effect of MetS components was tested in multivariable logistic regression models predicting overall and specific perioperative complications. Third, we tested for dose-response from the concomitant effect of multiple MetS components. All models were weighted and adjusted for clustering, as well as all available patient and hospital characteristics. RESULTS: Of 25,875 patients: (1) 59.3% had high blood pressure, (2) 14.7% had BMI 65 30, (3) 21.7% had altered fasting glucose, (4) 20.2% had high triglycerides, and (5) <0.01% had low high-density lipoprotein cholesterol. One vs 2 vs 3 vs 4 MetS components were recorded in 34.9% vs 22.9% vs 8.9% vs 2.2% patients. Of all, 11.1% exhibited 65 3 components and qualified for MetS. The rates of MetS increased over time (estimated annual percentage changes: +12.0%;P <.001). The 4 tested MetS components (high blood pressure, BMI 65 30, altered fasting glucose, and high triglycerides) achieved independent predictor status in multivariable models predicting overall, cardiac, miscellaneous medical, vascular, and respiratory complications, as well as transfusions. Moreover, a statistically significant dose-response was confirmed for the same endpoints. CONCLUSION: MetS and its components consistently and strongly predict perioperative complications after PN. Moreover, the strength of the effect was directly proportional to the number of MetS components exhibited by each individual patient, even if formal MetS diagnosis of 65 3 components has not been m

    Martian Atmospheric Temperature and Density Profiles During the First Year of NOMAD/TGO Solar Occultation Measurements

    Get PDF
    We present vertical profiles of temperature and density from solar occultation (SO) observations by the “Nadir and Occultation for Mars Discovery” (NOMAD) spectrometer on board the Trace Gas Orbiter during its first operational year, which covered the second half of Mars Year 34. We used calibrated transmittance spectra in 380 scans, and apply an in-house pre-processing to clean data systematics. Temperature and CO2 profiles up to about 90 km, with consistent hydrostatic adjustment, are obtained, after adapting an Earth-tested retrieval scheme to Mars conditions. Both pre-processing and retrieval are discussed to illustrate their performance and robustness. Our results reveal the large impact of the MY34 Global Dust Storm (GDS), which warmed the atmosphere at all altitudes. The large GDS aerosols opacity limited the sounding of tropospheric layers. The retrieved temperatures agree well with global climate models (GCM) at tropospheric altitudes, but NOMAD mesospheric temperatures are wavier and globally colder by 10 K in the perihelion season, particularly during the GDS and its decay phase. We observe a warm layer around 80 km during the Southern Spring, especially in the Northern Hemisphere morning terminator, associated to large thermal tides, significantly stronger than in the GCM. Cold mesospheric pockets, close to CO2 condensation temperatures, are more frequently observed than in the GCM. NOMAD CO2 densities show oscillations upon a seasonal trend that track well the latitudinal variations expected. Results uncertainties and suggestions to improve future data re-analysis are briefly discussed

    Diversity of experimentation by farmers engaged in agroecology

    Get PDF
    International audienceAbstractAgroecology questions the production of generic knowledge. Rather than searching for the best practices for large-scale transfer, it would be more efficient to help farmers find their own solutions. A promising activity for farmers is experimentation because it answers their needs and helps them learn. However, how agroecological practices are tested by farmers in their own experiments is still poorly known. In this study, we examined the short-term experimental activity, i.e., experiments carried out at a yearly scale in pre-defined fields. Seventeen farmers in south eastern France were surveyed. The farmers practiced conventional or organic farming and cultivated either arable or market garden crops. Experiments on agroecological practices were characterized, located along a timeline, and discussed with them. To conduct the interviews with the farmers, each experiment was described in three stages: (1) designing the experiment, (2) managing it in real time, and (3) evaluating the results of the experiment. The data collected in the interviews were first analyzed to build a descriptive framework of farmers’ experiments, after which hierarchical cluster analysis was used to analyze the diversity of the farmers’ experiments. Here, we propose for the first time a generic framework to describe farmers’ experiments at a short time scale based on the consistency between the Design, Management, and Evaluation stages. We used the framework to characterize the diversity of farmers’ experiments and identified four clusters. The originality of this work is both building a descriptive framework resulting from in-depth analyses of farmers’ discourse and using statistical tools to identify and interpret the groups of experiments. Our results provide a better understanding of farmers’ experiments and suggest tools and methods to help them experiment, a major challenge in the promotion of a large-scale agroecological transition

    Water vapor vertical distribution on Mars during perihelion season of MY 34 and MY 35 with ExoMars‐TGO/NOMAD observations

    Get PDF
    The water vapor in the Martian atmosphere plays a significant role in the planet’s climate, being crucial in most of the chemical and radiative transfer processes. Despite its importance, the vertical distribution of H2O in the atmosphere has not still been characterized precisely enough. The recent ExoMars Trace Gas Orbiter (TGO) mission, with its Nadir and Occultation for MArs Discovery (NOMAD) instrument, has allowed us to measure the H2O vertical distribution with unprecedented resolution. Recent studies of vertical profiles have shown that high dust concentration in the atmosphere, in particular during dust storms, induces an efficient transport of the H2O to higher altitudes, from 40 km up to 80 km. We study the H2O vertical distribution in a subset of solar occultations during the perihelion of two Martian years (MYs), including the 2018 Global Dust Storm (GDS), in order to compare the same Martian season under GDS and non-GDS conditions. We present our state-of-the-art retrieval scheme, and we apply it to a combination of two diffraction orders, which permits sounding up to about 100 km. We confirm recent findings of H2O increasing at high altitudes during Ls = 190-205° in MY 34, reaching abundances of about 150 ppmv at 80 km in both hemispheres not found during the same period of MY 35. We found a hygropause’s steep rising during the GDS from 30 up to 80 km. Furthermore, strong supersaturation events have been identified at mesospheric altitudes even in presence of water ice layers retrieved by the IAA team

    Benefit of Adjuvant Chemotherapy After Radical Cystectomy for Treatment of Urothelial Carcinoma of the Bladder in the Elderly –An International Multicenter Study

    Get PDF
    BACKGROUND: Radical cystectomy (RC) is the standard treatment for muscle invasive bladder cancer, but approximately half of all patients will ultimately succumb to disease progression despite apparent cure with extirpative surgery. Elderly patients are at especially high risk of advanced disease and may benefit from perioperative systemic therapy. OBJECTIVE: To assess the real-world benefit of adjuvant chemotherapy (AC) in patients ≄75 years old. METHODS: We retrospectively reviewed patients who underwent RC for non-metastatic urothelial carcinoma of the bladder (UCB) from 12 participating international medical institutions. Kaplan-Meier survival curves and Cox regression models were used to assess the association between age groups, administration of AC and oncological outcome parameters such as recurrence-free survival (RFS), cancer-specific survival (CSS) and overall survival (OS). RESULTS: 4,335 patients were included in the analyses, of which 820 (18.9%) were ≄75 years old. These elderly patients had a higher rate of adverse pathologic features. In an univariable subgroup analysis in patients ≄75 years with lymph node metastasis, 5-year OS was significantly higher in patients who had received AC (41% vs. 30.9%, p = 0.02). In a multivariable Cox model that was adjusted for several established outcome predictors, there was a significant favorable association between the administration of AC in elderly patients and OS, but no RFS or CSS. CONCLUSIONS: In this large observational study, the administration of AC was associated with improved OS, but not RFS or CSS, in elderly patients treated with RC for UCB. This is of clinical importance, as elderly patients are more likely to have adverse pathologic features and experience worse survival outcomes. Treatment of UCB should include both a multidisciplinary approach and a geriatric evaluation to identify patients who are most likely to tolerate and benefit from AC

    Martian atmospheric temperature and density profiles during the 1st year of NOMAD/TGO solar occultation measurements

    Get PDF
    We present vertical profiles of temperature and density from solar occultation (SO) observations by the “Nadir and Occultation for Mars Discovery” (NOMAD) spectrometer on board the Trace Gas Orbiter (TGO) during its first operational year, which covered the second half of Mars Year 34. We used calibrated transmittance spectra in 380 scans, and apply an in-house pre-processing to clean data systematics. Temperature and CO2 profiles up to about 90 km, with consistent hydrostatic adjustment, are obtained, after adapting an Earth-tested retrieval scheme to Mars conditions. Both pre-processing and retrieval are discussed to illustrate their performance and robustness. Our results reveal the large impact of the MY34 Global Dust Storm (GDS), which warmed the atmosphere at all altitudes. The large GDS aerosols opacity limited the sounding of tropospheric layers. The retrieved temperatures agree well with global climate models (GCM) at tropospheric altitudes, but NOMAD mesospheric temperatures are wavier and globally colder by 10 K in the perihelion season, particularly during the GDS and its decay phase. We observe a warm layer around 80 km during the Southern Spring, especially in the Northern Hemisphere morning terminator, associated to large thermal tides, significantly stronger than in the GCM. Cold mesospheric pockets, close to CO2 condensation temperatures, are more frequently observed than in the GCM. NOMAD CO2 densities show oscillations upon a seasonal trend that track well the latitudinal variations expected. Results uncertainties and suggestions to improve future data re-analysis are briefly discussed

    First-Order Contaminant Removal in the Hyporheic Zone of Streams: Physical Insights from a Simple Analytical Model

    Full text link
    A simple analytical model is presented for the removal of stream-borne contaminants by hyporheic exchange across duned or rippled streambeds. The model assumes a steady-state balance between contaminant supply from the stream and first-order reaction in the sediment. Hyporheic exchange occurs by bed form pumping, in which water and contaminants flow into bed forms in high-pressure regions (downwelling zones) and out of bed forms in low-pressure regions (upwelling zones). Model-predicted contaminant concentrations are higher in downwelling zones than upwelling zones, reflecting the strong coupling that exists between transport and reaction in these systems. When flow-averaged, the concentration difference across upwelling and downwelling zones drives a net contaminant flux into the sediment bed proportional to the average downwelling velocity. The downwelling velocity is functionally equivalent to a mass transfer coefficient, and can be estimated from stream state variables including stream velocity, bed form geometry, and the hydraulic conductivity and porosity of the sediment. Increasing the mass transfer coefficient increases the fraction of streamwater cycling through the hyporheic zone (per unit length of stream) but also decreases the time contaminants undergo first-order reaction in the sediment. As a consequence, small changes in stream state variables can significantly alter the performance of hyporheic zone treatment systems

    First-order contaminant removal in the hyporheic zone of streams: physical insights from a simple analytical model

    No full text
    A simple analytical model is presented for the removal of stream-borne contaminants by hyporheic exchange across duned or rippled streambeds. The model assumes a steady-state balance between contaminant supply from the stream and first-order reaction in the sediment. Hyporheic exchange occurs by bed form pumping, in which water and contaminants flow into bed forms in high-pressure regions (downwelling zones) and out of bed forms in low-pressure regions (upwelling zones). Model-predicted contaminant concentrations are higher in downwelling zones than upwelling zones, reflecting the strong coupling that exists between transport and reaction in these systems. When flow-averaged, the concentration difference across upwelling and downwelling zones drives a net contaminant flux into the sediment bed proportional to the average downwelling velocity. The downwelling velocity is functionally equivalent to a mass transfer coefficient, and can be estimated from stream state variables including stream velocity, bed form geometry, and the hydraulic conductivity and porosity of the sediment. Increasing the mass transfer coefficient increases the fraction of stream water cycling through the hyporheic zone (per unit length of stream) but also decreases the time contaminants undergo first-order reaction in the sediment. As a consequence, small changes in stream state variables can significantly alter the performance of hyporheic zone treatment systems
    • 

    corecore