14 research outputs found

    Reducing Baylisascaris procyonis Roundworm Larvae in Raccoon Latrines

    Get PDF
    Baylisascaris procyonis roundworms, a parasite of raccoons, can infect humans, sometimes fatally. Parasite eggs can remain viable in raccoon latrines for years. To develop a management technique for parasite eggs, we tested anthelmintic baiting. The prevalence of eggs decreased at latrines, and larval infections decreased among intermediate hosts, indicating that baiting is effective

    Constitutive expression of bergaptol O-methyltransferase in Glehnia littoralis cell cultures.

    Get PDF
    We investigated whether exogenously supplied precursors of bergapten, namely umbelliferone, psoralen and bergaptol, could be utilized to produce bergapten without elicitation in Glehnia littoralis cell suspension cultures. The levels of added psoralen and bergaptol in the medium soon decreased, and this was followed by the detection of bergapten in both culture fluid and cells. Umbelliferone was also incorporated but in this case no bergapten was produced; instead, skimmin, umbelliferone monoglucoside, was detected. To determine whether conversion of psoralen to bergapten was due to enzyme induction by precursor feeding, the transcript accumulations and enzyme activities of bergaptol O-methyltransferase (BMT, EC 2.1.1.69), which catalyzes the last step of bergapten synthesis, and of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), which catalyzes the initial step of the phenylpropanoid biosynthetic pathway and is known as a marker enzyme of elicitation, were examined. The results showed that both the expression and the activity of BMT were always detected in all cells, including control cells. Since PAL was slightly induced in the cells supplied with/without precursors, phenylethyl alcohol (PEA, a competitive inhibitor of PAL) was applied to suspension cells prior to the addition of psoralen. PAL activity was effectively inhibited by PEA at 1-5 mM concentrations. Under these conditions, PEA did not affect bergapten production by cell cultures fed with psoralen at all. These results demonstrate that BMT is constitutively expressed in G. littoralis cell cultures

    Establishment of transgenic Rhazya stricta hairy roots to modulate terpenoid indole alkaloid production

    No full text
    Key message: Transgenic hairy roots of R. stricta were developed for investigation of alkaloid accumulations. The contents of five identified alkaloids, including serpentine as a new compound, increased compared to non-transformed roots .Abstract: Rhazya stricta Decne. is a rich source of pharmacologically active terpenoid indole alkaloids (TIAs). In order to study TIA production and enable metabolic engineering, we established hairy root cultures of R. stricta by co-cultivating cotyledon, hypocotyl, leaf, and shoot explants with wild-type Agrobacterium rhizogenes strain LBA 9402 and A. rhizogenes carrying the pK2WG7-gusA binary vector. Hairy roots initiated from the leaf explants 2 to 8 weeks. Transformation was confirmed by polymerase chain reaction and in case of GUS clones with GUS staining assay. Transformation efficiency was 74 and 83 % for wild-type and GUS hairy root clones, respectively. Alkaloid accumulation was monitored by HPLC, and identification was achieved by UPLC-MS analysis. The influence of light (16 h photoperiod versus total darkness) and media composition (modified Gamborg B5 medium versus Woody Plant Medium) on the production of TIAs were investigated. Compared to non-transformed roots, wild-type hairy roots accumulated significantly higher amounts of five alkaloids. GUS hairy roots contained higher amounts two of alkaloids compared to non-transformed roots. Light conditions had a marked effect on the accumulation of five alkaloids whereas the composition of media only affected the accumulation of two alkaloids. By successfully establishing R. stricta hairy root clones, the potential of transgenic hairy root systems in modulating TIA production was confirmed

    Oral vaccination of wildlife using a vaccinia–rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review

    No full text
    International audienceAbstractRABORAL V-RG® is an oral rabies vaccine bait that contains an attenuated (“modified-live”) recombinant vaccinia virus vector vaccine expressing the rabies virus glycoprotein gene (V-RG). Approximately 250 million doses have been distributed globally since 1987 without any reports of adverse reactions in wildlife or domestic animals since the first licensed recombinant oral rabies vaccine (ORV) was released into the environment to immunize wildlife populations against rabies. V-RG is genetically stable, is not detected in the oral cavity beyond 48 h after ingestion, is not shed by vaccinates into the environment, and has been tested for thermostability under a range of laboratory and field conditions. Safety of V-RG has been evaluated in over 50 vertebrate species, including non-human primates, with no adverse effects observed regardless of route or dose. Immunogenicity and efficacy have been demonstrated under laboratory and field conditions in multiple target species (including fox, raccoon, coyote, skunk, raccoon dog, and jackal). The liquid vaccine is packaged inside edible baits (i.e., RABORAL V-RG, the vaccine-bait product) which are distributed into wildlife habitats for consumption by target species. Field application of RABORAL V-RG has contributed to the elimination of wildlife rabies from three European countries (Belgium, France and Luxembourg) and of the dog/coyote rabies virus variant from the United States of America (USA). An oral rabies vaccination program in west-central Texas has essentially eliminated the gray fox rabies virus variant from Texas with the last case reported in a cow during 2009. A long-term ORV barrier program in the USA using RABORAL V-RG is preventing substantial geographic expansion of the raccoon rabies virus variant. RABORAL V-RG has also been used to control wildlife rabies in Israel for more than a decade. This paper: (1) reviews the development and historical use of RABORAL V-RG; (2) highlights wildlife rabies control programs using the vaccine in multiple species and countries; and (3) discusses current and future challenges faced by programs seeking to control or eliminate wildlife rabies

    Using Hairy Roots for Production of Valuable Plant Secondary Metabolites

    No full text

    Oral vaccination of wildlife using a vaccinia–rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review

    No full text
    corecore