39 research outputs found

    Phytoestrogen consumption from foods and supplements and epithelial ovarian cancer risk: a population-based case control study

    Get PDF
    BACKGROUND: While there is extensive literature evaluating the impact of phytoestrogen consumption on breast cancer risk, its role on ovarian cancer has received little attention. METHODS: We conducted a population-based case-control study to evaluate phytoestrogen intake from foods and supplements and epithelial ovarian cancer risk. Cases were identified in six counties in New Jersey through the New Jersey State Cancer Registry. Controls were identified by random digit dialing, CMS (Centers for Medicare and Medicaid Service) lists, and area sampling. A total of 205 cases and 390 controls were included in analyses. Unconditional logistic regression analyses were conducted to examine associations with total phytoestrogens, as well as isoflavones (daidzein, genistein, formononetin, and glycitein), lignans (matairesinol, lariciresinol, pinoresinol, secoisolariciresinol), and coumestrol. RESULTS: No statistically significant associations were found with any of the phytoestrogens under evaluation. However, there was a suggestion of an inverse association with total phytoestrogen consumption (from foods and supplements), with an odds ratio (OR) of 0.62 (95% CI: 0.38-1.00; p for trend: 0.04) for the highest vs. lowest tertile of consumption, after adjusting for reproductive covariates, age, race, education, BMI, and total energy. Further adjustment for smoking and physical activity attenuated risk estimates (OR: 0.66; 95% CI: 0.41-1.08). There was little evidence of an inverse association for isoflavones, lignans, or coumestrol. CONCLUSIONS: This study provided some suggestion that phytoestrogen consumption may decrease ovarian cancer risk, although results did not reach statistical significance

    Determination of low tetanus or diphtheria antitoxin titers in sera by a toxin neutralization assay and a modified toxin-binding inhibition test

    No full text
    A method for the screening of tetanus and diphtheria antibodies in serum using anatoxin (inactivated toxin) instead of toxin was developed as an alternative to the in vivo toxin neutralization assay based on the toxin-binding inhibition test (TOBI test). In this study, the serum titers (values between 1.0 and 19.5 IU) measured by a modified TOBI test (Modi-TOBI test) and toxin neutralization assays were correlated (P < 0.0001). Titers of tetanus or diphtheria antibodies were evaluated in serum samples from guinea pigs immunized with tetanus toxoid, diphtheria-tetanus or triple vaccine. For the Modi-TOBI test, after blocking the microtiter plates, standard tetanus or diphtheria antitoxin and different concentrations of guinea pig sera were incubated with the respective anatoxin. Twelve hours later, these samples were transferred to a plate previously coated with tetanus or diphtheria antitoxin to bind the remaining anatoxin. The anatoxin was then detected using a peroxidase-labeled tetanus or diphtheria antitoxin. Serum titers were calculated using a linear regression plot of the results for the corresponding standard antitoxin. For the toxin neutralization assay, L+/10/50 doses of either toxin combined with different concentrations of serum samples were inoculated into mice for anti-tetanus detection, or in guinea pigs for anti-diphtheria detection. Both assays were suitable for determining wide ranges of antitoxin levels. The linear regression plots showed high correlation coefficients for tetanus (r² = 0.95, P < 0.0001) and for diphtheria (r² = 0.93, P < 0.0001) between the in vitro and the in vivo assays. The standardized method is appropriate for evaluating titers of neutralizing antibodies, thus permitting the in vitro control of serum antitoxin levels

    Invasion-inhibitory antibodies elicited by immunization with Plasmodium vivax apical membrane antigen-1 expressed in Pichia pastoris yeast.

    Get PDF
    In a recent vaccine trial performed with African children, immunization with a recombinant protein based on Plasmodium falciparum apical membrane antigen 1 (AMA-1) conferred a significant degree of strain-specific resistance against malaria. To contribute to the efforts of generating a vaccine against Plasmodium vivax malaria, we expressed the ectodomain of P. vivax AMA-1 (PvAMA-1) as a secreted soluble protein in the methylotrophic yeast Pichia pastoris. Recognized by a high percentage of sera from individuals infected by P. vivax, this recombinant protein was found to have maintained its antigenicity. The immunogenicity of this protein was evaluated in mice using immunization protocols that included homologous and heterologous prime-boost strategies with plasmid DNA and recombinant protein. We used the following formulations containing different adjuvants: aluminum salts (Alum), Bordetella pertussis monophosphoryl lipid A (MPLA), flagellin FliC from Salmonella enterica serovar Typhimurium, saponin Quil A, or incomplete Freund's adjuvant (IFA). The formulations containing the adjuvants Quil A or IFA elicited the highest IgG antibody titers. Significant antibody titers were also obtained using a formulation developed for human use containing MPLA or Alum plus MPLA. Recombinant PvAMA-1 produced under "conditions of good laboratory practice" provided a good yield, high purity, low endotoxin levels, and no microbial contaminants and reproduced the experimental immunizations. Most relevant for vaccine development was the fact that immunization with PvAMA-1 elicited invasion-inhibitory antibodies against different Asian isolates of P. vivax. Our results show that AMA-1 expressed in P. pastoris is a promising antigen for use in future preclinical and clinical studies
    corecore