5,053 research outputs found

    Approaches for improving cutting processes and machine too in re-contouring

    Get PDF
    Re-contouring in the repair process of aircraft engine blades and vanes is a crucial task. Highest demands are made on the geometrical accuracy as well as on the machined surface of the part. Complexity rises even more due to the unique part characteristic originating from the operation and repair history. This requires well-designed processes and machine tool technologies. In this paper, approaches for coping with these challenges and improving the re-contouring process are described and discussed. This includes an advanced process simulation with its capabilities to accurately depict different material areas and predict process forces. Beyond, experimental investigations on workpiece-tooldeflection are presented. Finally, a machine tool prototype with a novel electromagnetic guiding system is introduced and the benefits of this technology in the field of repair are outlined.DFG/CRC/87

    Evolution of helicity in NOAA 10923 over three consecutive solar rotations

    Full text link
    We have studied the evolution of magnetic helicity and chirality in an active region over three consecutive solar rotations. The region when it first appeared was named NOAA10923 and in subsequent rotations it was numbered NOAA 10930, 10935 and 10941. We compare the chirality of these regions at photospheric, chromospheric and coronal heights. The observations used for photospheric and chromospheric heights are taken from Solar Vector Magnetograph (SVM) and H_alpha imaging telescope of Udaipur Solar Observatory (USO), respectively. We discuss the chirality of the sunspots and associated H_alpha filaments in these regions. We find that the twistedness of superpenumbral filaments is maintained in the photospheric transverse field vectors also. We also compare the chirality at photospheric and chromospheric heights with the chirality of the associated coronal loops, as observed from the HINODE X-Ray Telescope.Comment: 8 pages, 4 figure

    Learning to Extract Motion from Videos in Convolutional Neural Networks

    Full text link
    This paper shows how to extract dense optical flow from videos with a convolutional neural network (CNN). The proposed model constitutes a potential building block for deeper architectures to allow using motion without resorting to an external algorithm, \eg for recognition in videos. We derive our network architecture from signal processing principles to provide desired invariances to image contrast, phase and texture. We constrain weights within the network to enforce strict rotation invariance and substantially reduce the number of parameters to learn. We demonstrate end-to-end training on only 8 sequences of the Middlebury dataset, orders of magnitude less than competing CNN-based motion estimation methods, and obtain comparable performance to classical methods on the Middlebury benchmark. Importantly, our method outputs a distributed representation of motion that allows representing multiple, transparent motions, and dynamic textures. Our contributions on network design and rotation invariance offer insights nonspecific to motion estimation

    Towards T1-limited magnetic resonance imaging using Rabi beats

    Full text link
    Two proof-of-principle experiments towards T1-limited magnetic resonance imaging with NV centers in diamond are demonstrated. First, a large number of Rabi oscillations is measured and it is demonstrated that the hyperfine interaction due to the NV's 14N can be extracted from the beating oscillations. Second, the Rabi beats under V-type microwave excitation of the three hyperfine manifolds is studied experimentally and described theoretically.Comment: 6 pages, 8 figure

    Observation of An Evolving Magnetic Flux Rope Prior To and During A Solar Eruption

    Full text link
    Explosive energy release is a common phenomenon occurring in magnetized plasma systems ranging from laboratories, Earth's magnetosphere, the solar corona and astrophysical environments. Its physical explanation is usually attributed to magnetic reconnection in a thin current sheet. Here we report the important role of magnetic flux rope structure, a volumetric current channel, in producing explosive events. The flux rope is observed as a hot channel prior to and during a solar eruption from the Atmospheric Imaging Assembly (AIA) telescope on board the Solar Dynamic Observatory (SDO). It initially appears as a twisted and writhed sigmoidal structure with a temperature as high as 10 MK and then transforms toward a semi-circular shape during a slow rise phase, which is followed by fast acceleration and onset of a flare. The observations suggest that the instability of the magnetic flux rope trigger the eruption, thus making a major addition to the traditional magnetic-reconnection paradigm.Comment: 13 pages, 3 figure

    Narrative writing, reading and cognitive processes in middle childhood: what are the links?

    Get PDF
    This study investigated the relationship between measures of reading and writing, and explored whether cognitive measures known to be related to reading ability were also associated with writing performance in middle childhood. Sixty-Four children, aged between 8 years 9 months and 11 years 9 months, took part in a battery of writing, reading, and cognitive ability tasks. Reading fluency emerged as having a strong relationship to written language performance, after controlling for age and verbal reasoning. While children with reading difficulties were weak at spelling accuracy, they were otherwise found to produce written compositions of similar quality to typical readers. Boys produced less written text than girls, but did not demonstrate weaker written language abilities. Collectively the results demonstrate that writing skills can be separated into transcription and composition processes, and highlight the need for further research on the relationship between reading fluency and children’s writing

    Relationship between eruptions of active-region filaments and associated flares and CMEs

    Full text link
    To better understand the dynamical process of active-region filament eruptions and associated flares and CMEs, we carried out a statistical study of 120 events observed by BBSO, TRACE, and t(SOHO/EIT) from 1998 to 2007 and combined filament observations with the NOAA's flare reports, MDI magnetograms, and LASCO data, to investigate the relationship between active-region filament eruptions and other solar activities. We found that 115 out of 120 filament eruptions are associated with flares. 56 out of 105 filament eruptions are found to be associated with CMEs except for 15 events without corresponding LASCO data. We note the limitation of coronagraphs duo to geometry or sensitivity, leading to many smaller CMEs that are Earth-directed or well out of the plane of sky not being detected by near-Earth spacecraft. Excluding those without corresponding LASCO data, the CME association rate of active-region filament eruptions clearly increases with X-ray flare class from about 32% for C-class flares to 100% for X-class flares. The eruptions of active-region filaments associated with Halo CMEs are often accompanied by large flares. About 92% events associated with X-class flare are associated with Halo CMEs. Such a result is due to that the Earth-directed CMEs detected as Halo CMEs are often the larger CMEs and many of the smaller ones are not detected because of the geometry and low intensity. The average speed of the associated CMEs of filament eruptions increases with X-ray flare size from 563.7 km/s for C-class flares to 1506.6 km/s for X-class flares. Moreover, the magnetic emergence and cancellation play an important role in triggering filament eruptions. These findings may be instructive to not only in respect to the modeling of active-region filament eruptions but also in predicting flares and CMEs.Comment: 19 Pages, 7 figures, Accepted for publication in MNRA
    corecore