5,053 research outputs found
Educational software bundle for studying magnetotelluric theory and specific geoelectric structure models
ISO-3D Applications of 3-Dimensional Electromagnetic Induction by Sources in the Oceans: a MAST-3 Project. Final report of ISO-3D Working Group.
Approaches for improving cutting processes and machine too in re-contouring
Re-contouring in the repair process of aircraft engine blades and vanes is a crucial task. Highest demands are made on the geometrical accuracy as well as on the machined surface of the part. Complexity rises even more due to the unique part characteristic originating from the operation and repair history. This requires well-designed processes and machine tool technologies. In this paper, approaches for coping with these challenges and improving the re-contouring process are described and discussed. This includes an advanced process simulation with its capabilities to accurately depict different material areas and predict process forces. Beyond, experimental investigations on workpiece-tooldeflection are presented. Finally, a machine tool prototype with a novel electromagnetic guiding system is introduced and the benefits of this technology in the field of repair are outlined.DFG/CRC/87
Evolution of helicity in NOAA 10923 over three consecutive solar rotations
We have studied the evolution of magnetic helicity and chirality in an active
region over three consecutive solar rotations. The region when it first
appeared was named NOAA10923 and in subsequent rotations it was numbered NOAA
10930, 10935 and 10941. We compare the chirality of these regions at
photospheric, chromospheric and coronal heights. The observations used for
photospheric and chromospheric heights are taken from Solar Vector Magnetograph
(SVM) and H_alpha imaging telescope of Udaipur Solar Observatory (USO),
respectively. We discuss the chirality of the sunspots and associated H_alpha
filaments in these regions. We find that the twistedness of superpenumbral
filaments is maintained in the photospheric transverse field vectors also. We
also compare the chirality at photospheric and chromospheric heights with the
chirality of the associated coronal loops, as observed from the HINODE X-Ray
Telescope.Comment: 8 pages, 4 figure
Learning to Extract Motion from Videos in Convolutional Neural Networks
This paper shows how to extract dense optical flow from videos with a
convolutional neural network (CNN). The proposed model constitutes a potential
building block for deeper architectures to allow using motion without resorting
to an external algorithm, \eg for recognition in videos. We derive our network
architecture from signal processing principles to provide desired invariances
to image contrast, phase and texture. We constrain weights within the network
to enforce strict rotation invariance and substantially reduce the number of
parameters to learn. We demonstrate end-to-end training on only 8 sequences of
the Middlebury dataset, orders of magnitude less than competing CNN-based
motion estimation methods, and obtain comparable performance to classical
methods on the Middlebury benchmark. Importantly, our method outputs a
distributed representation of motion that allows representing multiple,
transparent motions, and dynamic textures. Our contributions on network design
and rotation invariance offer insights nonspecific to motion estimation
Towards T1-limited magnetic resonance imaging using Rabi beats
Two proof-of-principle experiments towards T1-limited magnetic resonance
imaging with NV centers in diamond are demonstrated. First, a large number of
Rabi oscillations is measured and it is demonstrated that the hyperfine
interaction due to the NV's 14N can be extracted from the beating oscillations.
Second, the Rabi beats under V-type microwave excitation of the three hyperfine
manifolds is studied experimentally and described theoretically.Comment: 6 pages, 8 figure
Observation of An Evolving Magnetic Flux Rope Prior To and During A Solar Eruption
Explosive energy release is a common phenomenon occurring in magnetized
plasma systems ranging from laboratories, Earth's magnetosphere, the solar
corona and astrophysical environments. Its physical explanation is usually
attributed to magnetic reconnection in a thin current sheet. Here we report the
important role of magnetic flux rope structure, a volumetric current channel,
in producing explosive events. The flux rope is observed as a hot channel prior
to and during a solar eruption from the Atmospheric Imaging Assembly (AIA)
telescope on board the Solar Dynamic Observatory (SDO). It initially appears as
a twisted and writhed sigmoidal structure with a temperature as high as 10 MK
and then transforms toward a semi-circular shape during a slow rise phase,
which is followed by fast acceleration and onset of a flare. The observations
suggest that the instability of the magnetic flux rope trigger the eruption,
thus making a major addition to the traditional magnetic-reconnection paradigm.Comment: 13 pages, 3 figure
Narrative writing, reading and cognitive processes in middle childhood: what are the links?
This study investigated the relationship between measures of reading and writing, and explored whether cognitive measures known to be related to reading ability were also associated with writing performance in middle childhood. Sixty-Four children, aged between 8 years 9 months and 11 years 9 months, took part in a battery of writing, reading, and cognitive ability tasks. Reading fluency emerged as having a strong relationship to written language performance, after controlling for age and verbal reasoning. While children with reading difficulties were weak at spelling accuracy, they were otherwise found to produce written compositions of similar quality to typical readers. Boys produced less written text than girls, but did not demonstrate weaker written language abilities. Collectively the results demonstrate that writing skills can be separated into transcription and composition processes, and highlight the need for further research on the relationship between reading fluency and children’s writing
Relationship between eruptions of active-region filaments and associated flares and CMEs
To better understand the dynamical process of active-region filament
eruptions and associated flares and CMEs, we carried out a statistical study of
120 events observed by BBSO, TRACE, and t(SOHO/EIT) from 1998 to 2007 and
combined filament observations with the NOAA's flare reports, MDI magnetograms,
and LASCO data, to investigate the relationship between active-region filament
eruptions and other solar activities. We found that 115 out of 120 filament
eruptions are associated with flares. 56 out of 105 filament eruptions are
found to be associated with CMEs except for 15 events without corresponding
LASCO data. We note the limitation of coronagraphs duo to geometry or
sensitivity, leading to many smaller CMEs that are Earth-directed or well out
of the plane of sky not being detected by near-Earth spacecraft. Excluding
those without corresponding LASCO data, the CME association rate of
active-region filament eruptions clearly increases with X-ray flare class from
about 32% for C-class flares to 100% for X-class flares. The eruptions of
active-region filaments associated with Halo CMEs are often accompanied by
large flares. About 92% events associated with X-class flare are associated
with Halo CMEs. Such a result is due to that the Earth-directed CMEs detected
as Halo CMEs are often the larger CMEs and many of the smaller ones are not
detected because of the geometry and low intensity. The average speed of the
associated CMEs of filament eruptions increases with X-ray flare size from
563.7 km/s for C-class flares to 1506.6 km/s for X-class flares. Moreover, the
magnetic emergence and cancellation play an important role in triggering
filament eruptions. These findings may be instructive to not only in respect to
the modeling of active-region filament eruptions but also in predicting flares
and CMEs.Comment: 19 Pages, 7 figures, Accepted for publication in MNRA
- …
