24 research outputs found

    Targeting lymphangiogenesis to prevent tumour metastasis

    Get PDF
    Recent studies involving animal models of cancer and clinicopathological analyses of human tumours suggest that the growth of lymphatic vessels (lymphangiogenesis) in or nearby tumours is associated with the metastatic spread of cancer. The best validated molecular signalling system for tumour lymphangiogenesis involves the secreted proteins vascular endothelial growth factor-C (VEGF-C) and VEGF-D that induce growth of lymphatic vessels via activation of VEGF receptor-3 (VEGFR-3) localised on the surface of lymphatic endothelial cells. In this review, we discuss the evidence supporting a role for this signalling system in the spread of cancer and potential approaches for blocking this system to prevent tumour metastasis

    A four-surface schematic eye of macaque monkey obtained by an optical method

    Get PDF
    AbstractSchematic eyes for four Macaca fascicularis monkeys were constructed from measurements of the positions and curvatures of the anterior and posterior surfaces of the cornea and lens. All of these measurements were obtained from Scheimpflug photography through the use of a ray-tracing analysis. Some of these measurements were also checked (and confirmed) by keratometry and ultrasound. Gaussian lens equations were applied to the measured dimensions of each individual eye in order to construct schematic eyes. The mean total power predicted by the schematic eyes agreed closely with independent measurements based on retinoscopy and ultrasound results, 74.2 Β± 1.3 (SEM) vs 74.7 Β± 0.3 (SEM) diopters. The predicted magnification of 202 ΞΌm/deg in one eye was confirmed by direct measurement of 205 ΞΌm/deg for a foveal laser lesion. The mean foveal retinal magnification calculated for our eight schematic eyes was 211 Β± (SEM) ΞΌm/deg, slightly less than the value obtained by application of the method of Rolls and Cowey [Experimental Brain Research, 10, 298–310 (1970)] to our eight eyes but just 4% more than the value obtained by application of the method of Perry and Cowey [Vision Research, 12, 1795–1810 (1985)]

    Lymphatic vessel density and function in experimental bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lymphatics form a second circulatory system that drains the extracellular fluid and proteins from the tumor microenvironment, and provides an exclusive environment in which immune cells interact and respond to foreign antigen. Both cancer and inflammation are known to induce lymphangiogenesis. However, little is known about bladder lymphatic vessels and their involvement in cancer formation and progression.</p> <p>Methods</p> <p>A double transgenic mouse model was generated by crossing a bladder cancer-induced transgenic, in which SV40 large T antigen was under the control of uroplakin II promoter, with another transgenic mouse harboring a <it>lacZ </it>reporter gene under the control of an NF-ΞΊB-responsive promoter (ΞΊB-<it>lacZ</it>) exhibiting constitutive activity of Ξ²-galactosidase in lymphatic endothelial cells. In this new mouse model (SV40-<it>lacZ</it>), we examined the lymphatic vessel density (LVD) and function (LVF) during bladder cancer progression. LVD was performed in bladder whole mounts and cross-sections by fluorescent immunohistochemistry (IHC) using LYVE-1 antibody. LVF was assessed by real-time <it>in vivo </it>imaging techniques using a contrast agent (biotin-BSA-Gd-DTPA-Cy5.5; Gd-Cy5.5) suitable for both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF). In addition, IHC of Cy5.5 was used for time-course analysis of co-localization of Gd-Cy5.5 with LYVE-1-positive lymphatics and CD31-positive blood vessels.</p> <p>Results</p> <p>SV40-<it>lacZ </it>mice develop bladder cancer and permitted visualization of lymphatics. A significant increase in LVD was found concomitantly with bladder cancer progression. Double labeling of the bladder cross-sections with LYVE-1 and Ki-67 antibodies indicated cancer-induced lymphangiogenesis. MRI detected mouse bladder cancer, as early as 4 months, and permitted to follow tumor sizes during cancer progression. Using Gd-Cy5.5 as a contrast agent for MRI-guided lymphangiography, we determined a possible reduction of lymphatic flow within the tumoral area. In addition, NIRF studies of Gd-Cy5.5 confirmed its temporal distribution between CD31-positive blood vessels and LYVE-1 positive lymphatic vessels.</p> <p>Conclusion</p> <p>SV40-<it>lacZ </it>mice permit the visualization of lymphatics during bladder cancer progression. Gd-Cy5.5, as a double contrast agent for NIRF and MRI, permits to quantify delivery, transport rates, and volumes of macromolecular fluid flow through the interstitial-lymphatic continuum. Our results open the path for the study of lymphatic activity <it>in vivo </it>and in real time, and support the role of lymphangiogenesis during bladder cancer progression.</p

    First international consensus on the methodology of lymphangiogenesis quantification in solid human tumours

    Get PDF
    The lymphatic system is the primary pathway of metastasis for most human cancers. Recent research efforts in studying lymphangiogenesis have suggested the existence of a relationship between lymphatic vessel density and patient survival. However, current methodology of lymphangiogenesis quantification is still characterised by high intra- and interobserver variability. For the amount of lymphatic vessels in a tumour to be a clinically useful parameter, a reliable quantification technique needs to be developed. With this consensus report, we therefore would like to initiate discussion on the standardisation of the immunohistochemical method for lymphangiogenesis assessment

    Model of Experimental Cystitis in Albino Wistar Rats

    No full text

    Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models.

    Get PDF
    Anti-angiogenic therapies have shown limited efficacy in the clinical management of metastatic disease, including lung metastases. Moreover, the mechanisms via which tumours resist anti-angiogenic therapies are poorly understood. Importantly, rather than utilizing angiogenesis, some metastases may instead incorporate pre-existing vessels from surrounding tissue (vessel co-option). As anti-angiogenic therapies were designed to target only new blood vessel growth, vessel co-option has been proposed as a mechanism that could drive resistance to anti-angiogenic therapy. However, vessel co-option has not been extensively studied in lung metastases, and its potential to mediate resistance to anti-angiogenic therapy in lung metastases is not established. Here, we examined the mechanism of tumour vascularization in 164 human lung metastasis specimens (composed of breast, colorectal and renal cancer lung metastasis cases). We identified four distinct histopathological growth patterns (HGPs) of lung metastasis (alveolar, interstitial, perivascular cuffing, and pushing), each of which vascularized via a different mechanism. In the alveolar HGP, cancer cells invaded the alveolar air spaces, facilitating the co-option of alveolar capillaries. In the interstitial HGP, cancer cells invaded the alveolar walls to co-opt alveolar capillaries. In the perivascular cuffing HGP, cancer cells grew by co-opting larger vessels of the lung. Only in the pushing HGP did the tumours vascularize by angiogenesis. Importantly, vessel co-option occurred with high frequency, being present in >80% of the cases examined. Moreover, we provide evidence that vessel co-option mediates resistance to the anti-angiogenic drug sunitinib in preclinical lung metastasis models. Assuming that our interpretation of the data is correct, we conclude that vessel co-option in lung metastases occurs through at least three distinct mechanisms, that vessel co-option occurs frequently in lung metastases, and that vessel co-option could mediate resistance to anti-angiogenic therapy in lung metastases. Novel therapies designed to target both angiogenesis and vessel co-option are therefore warranted. Β© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland
    corecore