82,331 research outputs found
An investigation of a close-coupled canard as a direct side-force generator on a fighter model at Mach numbers from 0.40 to 0.90
The canard panels had 5 deg of dihedral and were deflected differentially or individually over an incidence range from 10 deg to -10 deg and a model angle-of-attack range from -4 deg to 15 deg. Significant side forces were generated in a transonic tunnel by differential and single canard-panel deflections over the Mach number and angle-of-attack ranges. The yawing moment resulting from the forward location of the generated side force would necessitate a vertical tail/rudder trim force which would augment the forebody side force and be of comparable magnitude. Incremental side forces, yawing moments, lift, and pitching moments due to single canard-panel deflections were additive; that is, their sums were essentially the same as the forces and moments produced by differential canard-panel deflections of the same magnitude. Differential and single canard-panel deflections produced negligible rolling moments over the Mach number and angle-of-attack ranges
Distributed XQuery
XQuery is increasingly being used for ad-hoc integration of heterogeneous data sources that are logically mapped to XML. For example, scientists need to query multiple scientific databases, which are distributed over a large geographic area, and it is possible to use XQuery for that. However, the language currently supports only the data shipping query evaluation model (through the document() function): it fetches all data sources to a single server, then runs the query there. This is a major limitation for many applications, especially when some data sources are very large, or when a data source is only a virtual XML view over some other logical data model. We propose here a simple extension to XQuery that allows query shipping to be expressed in the language, in addition to data shipping
Chain Reduction for Binary and Zero-Suppressed Decision Diagrams
Chain reduction enables reduced ordered binary decision diagrams (BDDs) and
zero-suppressed binary decision diagrams (ZDDs) to each take advantage of the
others' ability to symbolically represent Boolean functions in compact form.
For any Boolean function, its chain-reduced ZDD (CZDD) representation will be
no larger than its ZDD representation, and at most twice the size of its BDD
representation. The chain-reduced BDD (CBDD) of a function will be no larger
than its BDD representation, and at most three times the size of its CZDD
representation. Extensions to the standard algorithms for operating on BDDs and
ZDDs enable them to operate on the chain-reduced versions. Experimental
evaluations on representative benchmarks for encoding word lists, solving
combinatorial problems, and operating on digital circuits indicate that chain
reduction can provide significant benefits in terms of both memory and
execution time
Inactive alleles of cytochrome P450 2C19 may be positively selected in human evolution Genome evolution and evolutionary systems biology
© 2014 Janha et al.; licensee BioMed Central Ltd.Background: Cytochrome P450 CYP2C19 metabolizes a wide range of pharmacologically active substances and a relatively small number of naturally occurring environmental toxins. Poor activity alleles of CYP2C19 are very frequent worldwide, particularly in Asia, raising the possibility that reduced metabolism could be advantageous in some circumstances. The evolutionary selective forces acting on this gene have not previously been investigated. We analyzed CYP2C19 genetic markers from 127 Gambians and on 120 chromosomes from Yoruba, Europeans and Asians (Japanese + Han Chinese) in the Hapmap database. Haplotype breakdown was explored using bifurcation plots and relative extended haplotype homozygosity (REHH). Allele frequency differentiation across populations was estimated using the fixation index (FST) and haplotype diversity with coalescent models. Results: Bifurcation plots suggested conservation of alleles conferring slow metabolism (CYP2C19∗2 and ∗3). REHH was high around CYP2C19∗2 in Yoruba (REHH 8.3, at 133.3 kb from the core) and to a lesser extent in Europeans (3.5, at 37.7 kb) and Asians (2.8, at -29.7 kb). FST at the CYP2C19 locus was low overall (0.098). CYP2C19∗3 was an FST outlier in Asians (0.293), CYP2C19 haplotype diversity ST is low at the CYP2C19 locus, suggesting balancing selection overall. The biological factors responsible for these selective pressures are currently unknown. One possible explanation is that early humans were exposed to a ubiquitous novel toxin activated by CYP2C19. The genetic adaptation took place within the last 10,000 years which coincides with the development of systematic agricultural practices.This work was supported by the Medical Research Council Unit The Gambia and the European and Developing Countries Clinical Trials Partnership [grant number CG_ta_05_40204_018]
Recommended from our members
A genetic algorithm for the design of a fuzzy controller for active queue management
Active queue management (AQM) policies are those
policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the
hosts on the network borders, and the adoption of a suitable control
policy. This paper proposes the adoption of a fuzzy proportional
integral (FPI) controller as an active queue manager for Internet
routers. The analytical design of the proposed FPI controller is
carried out in analogy with a proportional integral (PI) controller,
which recently has been proposed for AQM. A genetic algorithm is
proposed for tuning of the FPI controller parameters with respect
to optimal disturbance rejection. In the paper the FPI controller
design metodology is described and the results of the comparison
with random early detection (RED), tail drop, and PI controller
are presented
Recommended from our members
Learning stationary time series using Gaussian processes with nonparametric kernels
A performant XQuery to SQL translator
We describe a largely complete and efficient XQuery to SQL translation for XML publishing. Our translation supports the entire XQuery language, except for functions, if statements and upwards navigation axes. The system has three important properties. First, it preserves the correct XQuery semantics. This is accomplished by first translating XQuery into core-XQuery, using a complete XQuery implementation, Galax. Second, we optimize the resulting SQL queries. We develop a comprehensive framework for optimizing the XQuery to SQL translation, which is effective for a wide range of XQuery workloads. Third, our translation is platform independent. Our system achieves high degree of efficiency on a wide range of relational systems. This paper reports an extensive experimental validation on several XQuery workloads, using MySQL, PostgreSQL, and SQL Server, and compares this approach with five native XQuery engines: Galax (the newer, optimized version), Saxon, QizOpen, IMDB and Quexo
The a-number of hyperelliptic curves
It is known that for a smooth hyperelliptic curve to have a large -number,
the genus must be small relative to the characteristic of the field, ,
over which the curve is defined. It was proven by Elkin that for a genus
hyperelliptic curve to have , the genus is bounded by
. In this paper, we show that this bound can be lowered to . The method of proof is to force the Cartier-Manin matrix to have rank one
and examine what restrictions that places on the affine equation defining the
hyperelliptic curve. We then use this bound to summarize what is known about
the existence of such curves when and .Comment: 7 pages. v2: revised and improved the proof of the main theorem based
on suggestions from the referee. To appear in the proceedings volume of Women
in Numbers Europe-
Recommended from our members
How Accurately Can We Measure the Reconnection Rate E M for the MMS Diffusion Region Event of 11 July 2017?
We investigate the accuracy with which the reconnection electric field E M can be determined from in situ plasma data. We study the magnetotail electron diffusion region observed by National Aeronautics and Space Administration's Magnetospheric Multiscale (MMS) on 11 July 2017 at 22:34 UT and focus on the very large errors in E M that result from errors in an L M N boundary normal coordinate system. We determine several L M N coordinates for this MMS event using several different methods. We use these M axes to estimate E M. We find some consensus that the reconnection rate was roughly E M = 3.2 ± 0.6 mV/m, which corresponds to a normalized reconnection rate of 0.18 ± 0.035. Minimum variance analysis of the electron velocity (MVA-v e), MVA of E, minimization of Faraday residue, and an adjusted version of the maximum directional derivative of the magnetic field (MDD-B) technique all produce reasonably similar coordinate axes. We use virtual MMS data from a particle-in-cell simulation of this event to estimate the errors in the coordinate axes and reconnection rate associated with MVA-v e and MDD-B. The L and M directions are most reliably determined by MVA-v e when the spacecraft observes a clear electron jet reversal. When the magnetic field data have errors as small as 0.5% of the background field strength, the M direction obtained by MDD-B technique may be off by as much as 35°. The normal direction is most accurately obtained by MDD-B. Overall, we find that these techniques were able to identify E M from the virtual data within error bars ≥20%
- …
