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Abstract

We introduce the Gaussian Process Convolution Model (GPCM), a two-stage non-
parametric generative procedure to model stationary signals as the convolution
between a continuous-time white-noise process and a continuous-time linear filter
drawn from Gaussian process. The GPCM is a continuous-time nonparametric-
window moving average process and, conditionally, is itself a Gaussian pro-
cess with a nonparametric kernel defined in a probabilistic fashion. The gen-
erative model can be equivalently considered in the frequency domain, where
the power spectral density of the signal is specified using a Gaussian process.
One of the main contributions of the paper is to develop a novel variational free-
energy approach based on inter-domain inducing variables that efficiently learns
the continuous-time linear filter and infers the driving white-noise process. In
turn, this scheme provides closed-form probabilistic estimates of the covariance
kernel and the noise-free signal both in denoising and prediction scenarios. Addi-
tionally, the variational inference procedure provides closed-form expressions for
the approximate posterior of the spectral density given the observed data, leading
to new Bayesian nonparametric approaches to spectrum estimation. The proposed
GPCM is validated using synthetic and real-world signals.

1 Introduction

Gaussian process (GP) regression models have become a standard tool in Bayesian signal estimation
due to their expressiveness, robustness to overfitting and tractability [1]. GP regression begins with
a prior distribution over functions that encapsulates a priori assumptions, such as smoothness, sta-
tionarity or periodicity. The prior is then updated by incorporating information from observed data
points via their likelihood functions. The result is a posterior distribution over functions that can be
used for prediction. Critically for this work, the posterior and therefore the resultant predictions, is
sensitive to the choice of prior distribution. The form of the prior covariance function (or kernel) of
the GP is arguably the central modelling choice. Employing a simple form of covariance will limit
the GP’s capacity to generalise. The ubiquitous radial basis function or squared exponential kernel,
for example, implies prediction is just a local smoothing operation [2, 3]. Expressive kernels are
needed [4, 5], but although kernel design is widely acknowledged as pivotal, it typically proceeds
via a “black art” in which a particular functional form is hand-crafted using intuitions about the
application domain to build a kernel using simpler primitive kernels as building blocks (e.g. [6]).

Recently, some sophisticated automated approaches to kernel design have been developed that con-
struct kernel mixtures on the basis of incorporating different measures of similarity [7, 8], or more
generally by both adding and multiplying kernels, thus mimicking the way in which a human would
search for the best kernel [5]. Alternatively, a flexible parametric kernel can be used as in the case
of the spectral mixture kernels, where the power spectral density (PSD) of the GP is parametrised
by a mixture of Gaussians [4].
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We see two problems with this general approach: The first is that computational tractability limits the
complexity of the kernels that can be designed in this way. Such constraints are problematic when
searching over kernel combinations and to a lesser extent when fitting potentially large numbers of
kernel hyperparameters. Indeed, many naturally occurring signals contain more complex structure
than can comfortably be entertained using current methods, time series with complex spectra like
sounds being a case in point [9, 10]. The second limitation is that hyperparameters of the kernel
are typically fit by maximisation of the model marginal likelihood. For complex kernels with large
numbers of hyperparameters, this can easily result in overfitting rearing its ugly head once more (see
sec. 4.2).

This paper attempts to remedy the existing limitations of GPs in the time series setting using the
same rationale by which GPs were originally developed. That is, kernels themselves are treated
nonparametrically to enable flexible forms whose complexity can grow as more structure is revealed
in the data. Moreover, approximate Bayesian inference is used for estimation, thus side-stepping
problems with model structure search and protecting against overfitting. These benefits are achieved
by modelling time series as the output of a linear and time-invariant system defined by a convolution
between a white-noise process and a continuous-time linear filter. By considering the filter to be
drawn from a GP, the expected second-order statistics (and, as a consequence, the spectral density)
of the output signal are defined in a nonparametric fashion. The next section presents the proposed
model, its relationship to GPs and how to sample from it. In Section 3 we develop an analytic
approximate inference method using state-of-the-art variational free-energy approximations for per-
forming inference and learning. Section 4 shows simulations using both synthetic and real-world
datasets. Finally, Section 5 presents a discussion of our findings.

2 Regression model: Convolving a linear filter and a white-noise process

We introduce the Gaussian Process Convolution Model (GPCM) which can be viewed as construct-
ing a distribution over functions f(t) using a two-stage generative model. In the first stage, a con-
tinuous filter function h(t) : R 7→ R is drawn from a GP with covariance function Kh(t1, t2). In
the second stage, the function f(t) is produced by convolving the filter with continuous time white-
noise x(t). The white-noise can be treated informally as a draw from a GP with a delta-function
covariance,1

h(t) ∼ GP (0,Kh(t1, t2)), x(t) ∼ GP (0, σ2
xδ(t1 − t2)), f(t) =

∫
R
h(t− τ)x(τ)dτ. (1)

This family of models can be motivated from several different perspectives due to the ubiquity of
continuous-time linear systems.

First, the model relates to linear time-invariant (LTI) systems [12]. The process x(t) is the input
to the LTI system, the function h(t) is the system’s impulse response (which is modelled as a draw
from a GP) and f(t) is its output. In this setting, as an LTI system is entirely characterised by its
impulse response [12], model design boils down to identifying a suitable function h(t). A second
perspective views the model through the lens of differential equations, in which case h(t) can be
considered to be the Green’s function of a system defined by a linear differential equation that is
driven by white-noise. In this way, the prior over h(t) implicitly defines a prior over the coefficients
of linear differential equations of potentially infinite order [13]. Third, the GPCM can be thought
of as a continuous-time generalisation of the discrete-time moving average process in which the
window is potentially infinite in extent and is produced by a GP prior [14].

A fourth perspective relates the GPCM to standard GP models. Consider the filter h(t) to be known.
In this case the process f(t)|h is distributed according to a GP, since f(t) is a linear combination
of Gaussian random variables. The mean function mf |h(f(t)) and covariance function Kf |h(t1, t2)
of the random variable f |h, t ∈ R, are then stationary and given by mf |h(f(t)) = E [f(t)|h] =∫
R h(t− τ)E [x(τ)] dτ = 0 and

Kf |h(t1, t2) = Kf |h(t) =
∫
R
h(s)h(s+ t)ds = (h(t) ∗ h(−t))(t) (2)

1Here we use informal notation common in the GP literature. A more formal treatment would use stochastic
integral notation [11], which replaces the differential element x(τ)dτ = dW (τ), so that eq. (1) becomes a
stochastic integral equation (w.r.t. the Brownian motion W ).
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that is, the convolution between the filter h(t) and its mirrored version with respect to t = 0 — see
sec. 1 of the supplementary material for the full derivation.

Since h(t) is itself is drawn from a nonparametric prior, the presented model (through the relation-
ship above) induces a prior over nonparametric kernels. A particular case is obtained when h(t)
is chosen as the basis expansion of a reproducing kernel Hilbert space [15] with parametric kernel
(e.g., the squared exponential kernel), whereby Kf |h becomes such a kernel.

A fifth perspective considers the model in the frequency domain rather than the time domain. Here
the continuous-time linear filter shapes the spectral content of the input process x(t). As x(t) is
white-noise, it has positive PSD at all frequencies, which can potentially influence f(t). More
precisely, since the PSD of f |h is given by the Fourier transform of the covariance function (by
the Wiener–Khinchin theorem [12]), the model places a nonparametric prior over the PSD, given
by F(Kf |h(t))(ω) =

∫
RKf |h(t)e

−jωtdt = |h̃(ω)|2, where h̃(ω) =
∫
R h(t)e

−jωtdt is the Fourier
transform of the filter.

Armed with these different theoretical perspectives on the GPCM generative model, we next focus
on how to design appropriate covariance functions for the filter.

2.1 Sensible and tractable priors over the filter function

Real-world signals have finite power (which relates to the stability of the system) and potentially
complex spectral content. How can such knowledge be built into the filter covariance function
Kh(t1, t2)? To fulfil these conditions, we model the linear filter h(t) as a draw from a squared
exponential GP that is multiplied by a Gaussian window (centred on zero) in order to restrict its
extent. The resulting decaying squared exponential (DSE) covariance function is given by a squared
exponential (SE) covariance pre- and post-multiplied by e−αt

2
1 and e−αt

2
2 respectively, that is,

Kh(t1, t2) = KDSE(t1, t2) = σ2
he
−αt21e−γ(t1−t2)

2

e−αt
2
2 , α, γ, σh > 0. (3)

With the GP priors for x(t) and h(t), f(t) is zero-mean, stationary and has a variance E[f2(t)] =
σ2
xσ

2
h

√
π/(2α). Consequently, by Chebyshev’s inequality, f(t) is stochastically bounded, that is,

Pr(|f(t)| ≥ T ) ≤ σ2
xσ

2
h

√
π/(2α)T−2, T ∈ R. Hence, the exponential decay of KDSE (controlled

by α) plays a key role in the finiteness of the integral in eq. (1) — and, consequently, of f(t).

Additionally, the DSE model for the filter h(t) provides a flexible prior distribution over linear sys-
tems, where the hyperparameters have physical meaning: σ2

h controls the power of the output f(t);
1/
√
γ is the characteristic timescale over which the filter varies that, in turn, determines the typical

frequency content of the system; finally, 1/
√
α is the temporal extent of the filter which controls the

length of time correlations in the output signal and, equivalently, the bandwidth characteristics in
the frequency domain.

Although the covariance function is flexible, its Gaussian form facilitates analytic computation that
will be leveraged when (approximately) sampling from the DSE-GPCM and performing inference.
In principle, it is also possible in the framework that follows to add causal structure into the covari-
ance function so that only causal filters receive non-zero prior probability density, but we leave that
extension for future work.

2.2 Sampling from the model

Exact sampling from the proposed model in eq. (1) is not possible, since it requires computation
of the convolution between infinite dimensional processes h(t) and x(t). It is possible to make
some analytic progress by considering, instead, the GP formulation of the GPCM in eq. (2) and
noting that sampling f(t)|h ∼ GP (0,Kf |h) only requires knowledge of Kf |h = h(t) ∗ h(−t)
and therefore avoids explicit representation of the troublesome white-noise process x(t). Further
progress requires approximation. The first key insight is that h(t) can be sampled at a finite number
of locations h = h(t) = [h(t1), . . . , h(tNh

)] using a multivariate Gaussian and then exact analytic
inference can be performed to infer the entire function h(t) (via noiseless GP regression). Moreover,
since the filter is drawn from the DSE kernel h(t) ∼ GP (0,KDSE) it is, with high probability,
temporally limited in extent and smoothly varying. Therefore, a relatively small number of samples
Nh can potentially enable accurate estimates of h(t). The second key insight is that it is possible,
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when using the DSE kernel, to analytically compute the expected value of the covariance of f(t)|h,
Kf |h = E[Kf |h|h] = E[h(t) ∗ h(−t)|h] as well as the uncertainty in this quantity. The more values
the latent process h we consider, the lower the uncertainty in h and, as a consequence,Kf |h → Kf |h
almost surely. This is an example of a Bayesian numerical integration method since the approach
maintains knowledge of its own inaccuracy [16].

In more detail, the kernel approximation Kf |h(t1, t2) is given by:

E[Kf |h(t1, t2)|h] = E
[∫

R
h(t1 − τ)h(t2 − τ)dτ

∣∣∣∣h] = ∫
R
E [h(t1 − τ)h(t2 − τ)|h] dτ

=

∫
R
KDSE(t1 − τ, t2 − τ)dτ +

Ng∑
r,s=1

Mr,s

∫
R
KDSE(t1 − τ, tr)KDSE(ts, t2 − τ)dτ

where Mr,s is the (r, s)th entry of the matrix (K−1hhTK−1 −K−1), K = KDSE(t, t). The kernel
approximation and its Fourier transform, i.e., the PSD, can be calculated in closed form (see sec. 2
in the supplementary material). Fig. 1 illustrates the generative process of the proposed model.
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Figure 1: Sampling from the proposed regression model. From left to right: filter, kernel, power
spectral density and sample of the output f(·).

3 Inference and learning using variational methods

One of the main contributions of this paper is to devise a computationally tractable method for learn-
ing the filter h(t) (known as system identification in the control community [17]) and inferring the
white-noise process x(t) from a noisy dataset y ∈ RN produced by their convolution and additive
Gaussian noise, y(t) = f(t) + ε(t) =

∫
R h(t − τ)x(τ)dτ + ε(t), ε(t) ∼ N (0, σ2

ε ). Perform-
ing inference and learning is challenging for three reasons: First, the convolution means that each
observed datapoint depends on the entire unknown filter and white-noise process, which are infinite-
dimensional functions. Second, the model is non-linear in the unknown functions since the filter and
the white-noise multiply one another in the convolution. Third, continuous-time white-noise must
be handled with care since formally it is only well-behaved inside integrals.

We propose a variational approach that addresses these three problems. First, the convolution is
made tractable by using variational inducing variables that summarise the infinite dimensional latent
functions into finite dimensional inducing points. This is the same approach that is used for scaling
GP regression [18]. Second, the product non-linearity is made tractable by using a structured mean-
field approximation and leveraging the fact that the posterior is conditionally a GP when x(t) or
h(t) is fixed. Third, the direct representation of white-noise process is avoided by considering a
set of inducing variables instead, which are related to x(t) via an integral transformation (so-called
inter-domain inducing variables [19]). We outline the approach below.

In order to form the variational inter-domain approximation, we first expand the model with addi-
tional variables. We use X to denote the set of all integral transformations of x(t) with members
ux(t) =

∫
w(t, τ)x(τ)dτ (which includes the original white-noise process whenw(t, τ) = δ(t−τ))

and identically define the set H with members uh(t) =
∫
w(t, τ)h(τ)dτ . The variational lower

bound of the model evidence can be applied to this augmented model2 using Jensen’s inequality

L = log p(y) = log

∫
p(y, H,X)dHdX ≥

∫
q(H,X) log

p(y, H,X)

q(H,X)
dHdX = F (4)

2This formulation can be made technically rigorous for latent functions [20], but we do not elaborate on that
here to simplify the exposition.
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here q(H,X) is any variational distribution over the sets of processes X and H . The bound
can be written as the difference between the model evidence and the KL divergence between
the variational distribution over all integral transformed processes and the true posterior, F =
L − KL[q(H,X)||p(X,H|y)]. The bound is therefore saturated when q(H,X) = p(X,H|y),
but this is intractable. Instead, we choose a simpler parameterised form, similar in spirit to that used
in the approximate sampling procedure, that allows us to side-step these difficulties. In order to con-
struct the variational distribution, we first partition the set X into the original white-noise process,
a finite set of variables called inter-domain inducing points ux that will be used to parameterise the
approximation and the remaining variables X6=x,ux , so that X = {x,ux, X6=x,ux}. The set H is
partitioned identically H = {h,uh, H6=h,uh

}. We then choose a variational distribution q(H,X)
that mirrors the form of the joint distribution,

p(y, H,X) = p(x,X6=x,ux
|ux)p(h,H6=h,uh

|uh)p(ux)p(uh)p(y|h, x)
q(H,X) = p(x,X6=x,ux

|ux)p(h,H6=h,uh
|uh)q(ux)q(uh) = q(H)q(X).

This is a structured mean-field approximation [21]. The approximating distribution over the induc-
ing points q(ux)q(uh) is chosen to be a multivariate Gaussian (the optimal parametric form given
the assumed factorisation). Intuitively, the variational approximation implicitly constructs a surro-
gate GP regression problem, whose posterior q(ux)q(uh) induces a predictive distribution that best
captures the true posterior distribution as measured by the KL divergence.

Critically, the resulting bound is now tractable as we will now show. First, note that the shared prior
terms in the joint and approximation cancel leading to an elegant form,

F =

∫
q(h, x,uh,ux) log

p(y|h, x)p(uh)p(ux)
q(uh)q(ux)

dhdxduhdux (5)

= Eq [log p(y|h, x)]−KL[q(uh)||p(uh)]−KL[q(ux)||p(ux)]. (6)

The last two terms in the bound are simple to compute being KL divergences between multivariate
Gaussians. The first term, the average of the log-likelihood terms with respect to the variational
distribution, is more complex,

Eq [log p(y|h, x)] = −
N

2
log(2πσ2

ε )−
1

2σ2
ε

N∑
i=1

Eq

[(
y(ti)−

∫
R
h(ti − τ)x(τ)dτ

)2
]
.

Computation of the variational bound therefore requires the first and second moments of the con-
volution under the variational approximation. However, these can be computed analytically for
particular choices of covariance function such as the DSE, by taking the expectations inside the
integral (this is analogous to variational inference for the Gaussian Process Latent Variable Model
[22]). For example, the first moment of the convolution is

Eq
[∫

R
h(ti − τ)x(τ)dτ

]
=

∫
R
Eq(h,uh) [h(ti − τ)]Eq(x,ux)[x(τ)]dτ (7)

where the expectations take the form of the predictive mean in GP regression,
Eq(h,uh) [h(ti − τ)] = Kh,uh

(ti − τ)K−1uh,uh
µuh

and Eq(x,ux)[x(τ)] = Kx,ux
(τ)K−1ux,ux

µux

where {Kh,uh
,Kuh,uh

,Kx,ux
,Kux,ux

} are the covariance functions and {µuh
, µux

} are the
means of the approximate variational posterior. Crucially, the integral is tractable if the covariance
functions can be convolved analytically,

∫
RKh,uh

(ti − τ)Kx,ux
(τ)dτ , which is the case for the SE

and DSE covariances - see sec. 4 of the supplementary material for the derivation of the variational
lower bound.

The fact that it is possible to compute the first and second moments of the convolution under the
approximate posterior means that it is also tractable to compute the mean of the posterior distribution
over the kernel, Eq

[
Kf |h(t1, t2)

]
= Eq

[∫
R h(t1 − τ)h(t2 − τ)dτ

]
and the associated error-bars.

The method therefore supports full probabilistic inference and learning for nonparametric kernels,
in addition to extrapolation, interpolation and denoising in a tractable manner. The next section
discusses sensible choices for the integral transforms that define the inducing variables uh and ux.

3.1 Choice of the inducing variables uh and ux

In order to choose the domain of the inducing variables, it is useful to consider inference for the
white-noise process given a fixed window h(t). Typically, we assume that the window h(t) is
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smoothly varying, in which case the data y(t) are only determined by the low-frequency content of
the white-noise; conversely in inference, the data can only reveal the low frequencies in x(t). In fact,
since a continuous time white-noise process contains power at all frequencies and infinite power in
total, most of the white-noise content will be undeterminable, as it is suppressed by the filter (or
filtered out). However, for the same reason, these components do not affect prediction of f(t).

Since we can only learn the low-frequency content of the white-noise and this is all that is important
for making predictions, we consider inter-domain inducing points formed by a Gaussian integral
transform, ux =

∫
R exp

(
− 1

2l2 (tx − τ)
2
)
x(τ)dτ . These inducing variables represent a local esti-

mate of the white-noise process x around the inducing location tx considering a Gaussian window,
and have a squared exponential covariance by construction (these covariances are shown in sec. 3
of the supplementary material). In spectral terms, the process ux is a low-pass version of the true
process x. The variational parameters l and tx affect the approximate posterior and can be optimised
using the free-energy, although this was not investigated here to minimise computational overhead.
For the inducing variables uh we chose not to use the flexibility of the inter-domain parameterisation
and, instead, place the points in the same domain as the window.

4 Experiments

The DSE-GPCM was tested using synthetic data with known statistical properties and real-world
signals. The aim of these experiments was to validate the new approach to learn covariance functions
and PSDs while also providing error bars for the estimates, and to compare it against alternative
parametric and nonparametric approaches.

4.1 Learning known parametric kernels

We considered Gaussian processes with standard, parametric covariance kernels and verified that
our method is able to infer such kernels. Gaussian processes with squared exponential (GP-SE) and
spectral mixture (GP-SM) kernels, both of unit variance, were used to generate two time series on
the region [-44, 44] uniformly sampled at 10 Hz (i.e., 880 samples). We then constructed the ob-
servation signal by adding unit-variance white-noise. The experiment then consisted of (i) learning
the underlying kernel, (ii) estimating the latent process and (iii) performing imputation by removing
observations in the region [-4.4, 4.4] (10% of the observations).

Fig. 2 shows the results for the GP-SE case. We chose 88 inducing points for ux, that is, 1/10 of
the samples to be recovered and 30 for uh; the hyperparameters in eq. (2) were set to γ = 0.45
and α = 0.1, so as to allow for an uninformative prior on h(t). The variational objective F was
optimised with respect to the hyperparameter σh and the variational parameters µh, µx (means) and
the Cholesky factors of Ch, Cx (covariances) using conjugate gradients. The true SE kernel was
reconstructed from the noisy data with an accuracy of 5%, while the estimation mean squared error
(MSE) was within 1% of the (unit) noise variance for both the true GP-SE and the proposed model.

Fig. 3 shows the results for the GP-SM time series. Along the lines of the GP-SE case, the re-
construction of the true kernel and spectrum is remarkably accurate and the estimate of the latent
process has virtually the same mean square error (MSE) as the true GP-SM model. These toy results
indicate that the variational inference procedure can work well, in spite of known biases [23].

4.2 Learning the spectrum of real-world signals

The ability of the DSE-GPCM to provide Bayesian estimates of the PSD of real-world signals was
verified next. This was achieved through a comparison of the proposed model to (i) the spectral
mixture kernel (GP-SM) [4], (ii) tracking the Fourier coefficients using a Kalman filter (Kalman-
Fourier [24]), (iii) the Yule-Walker method and (iv) the periodogram [25].

We first analysed the Mauna Loa monthly CO2 concentration (de-trended). We considered the GP-
SM with 4 and 10 components, Kalman-Fourier with a partition of 500 points between zero and
the Nyquist frequency, Yule-Walker with 250 lags and the raw periodogram. All methods used all
the data and each PSD estimate was normalised w.r.t its maximum (shown in fig. 4). All methods
identified the three main frequency peaks at [0, year−1, 2year−1 ]; however, notice that the Kalman-
Fourier method does not provide sharp peaks and that GP-SM places Gaussians on frequencies with
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Figure 2: Joint learning of an SE kernel and data imputation using the proposed DSE-GPCM ap-
proach. Top: filter h(t) and inducing points uh (left), filtered white-noise process ux (centre) and
learnt kernel (right). Bottom: Latent signal and its estimates using both the DSE-GPCM and the
true model (GP-SE). Confidence intervals are shown in light blue (DSE-GPCM) and in between
dashed red lines (GP-SE) and they correspond to 99.7% for the kernel and 95% otherwise.
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Figure 3: Joint learning of an SM kernel and data imputation using a nonparametric kernel. True
and learnt kernel (left), true and learnt spectra (centre) and data imputation region (right).

negligible power — this is a known drawback of the GP-SM approach: it is sensitive to initialisation
and gets trapped in noisy frequency peaks (in this experiment, the centres of the GP-SM were ini-
tialised as multiples of one tenth of the Nyquist frequency). This example shows that the GP-SM can
overfit noise in training data. Conversely, observe how the proposed DSE-GPCM approach (with
Nh = 300 and Nx = 150) not only captured the first three peaks but also the spectral floor and
placed meaningful error bars (90%) where the raw periodogram laid.
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Figure 4: Spectral estimation of the Mauna Loa CO2 concentration. DSE-GPCM with error bars
(90%) is shown with the periodogram at the left and all other methods at the right for clarity.

The next experiment consisted of recovering the spectrum of an audio signal from the TIMIT corpus,
composed of 1750 samples (at 16kHz), only using an irregularly-sampled 20% of the available
data. We compared the proposed DSE-GPCM method to GP-SM (again 4 and 10 components) and
Kalman-Fourier; we used the periodogram and the Yule-Walker method as benchmarks, since these
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methods cannot handle unevenly-sampled data (therefore, they used all the data). Besides the PSD,
we also computed the learnt kernel, shown alongside the autocorrelation function in fig. 5 (left).

Due to its sensitivity to initial conditions, the centres of the GP-SM were initialised every 100Hz (the
harmonics of the signal are approximately every 114Hz); however, it was only with 10 components
that the GP-SM was able to find the four main lobes of the PSD. Notice also how the DSE-GPCM
accurately finds the main lobes, both in location and width, together with the 90% error bars.
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Figure 5: Audio signal from TIMIT. Induced kernel of DSE-GPCM and GP-SM alongside auto-
correlation function (left). PSD estimate using DSE-GPCM and raw periodogram (centre). PSD
estimate using GP-SM, Kalman-Fourier, Yule-Walker and raw periodogram (right).

5 Discussion

The Gaussian Process Convolution Model (GPCM) has been proposed as a generative model for
stationary time series based on the convolution between a filter function and a white-noise process.
Learning the model from data is achieved via a novel variational free-energy approximation, which
in turn allows us to perform predictions and inference on both the covariance kernel and the spec-
trum in a probabilistic, analytically and computationally tractable manner. The GPCM approach
was validated in the recovery of spectral density from non-uniformly sampled time series; to our
knowledge, this is the first probabilistic approach that places nonparametric prior over the spectral
density itself and which recovers a posterior distribution over that density directly from the time
series.

The encouraging results for both synthetic and real-world data shown in sec. 4 serve as a proof of
concept for the nonparametric design of covariance kernels and PSDs using convolution processes.
In this regard, extensions of the presented model can be identified in the following directions: First,
for the proposed GPCM to have a desired performance, the number of inducing points uh and ux
needs to be increased with the (i) high frequency content and (ii) range of correlations of the data;
therefore, to avoid the computational overhead associated to large quantities of inducing points, the
filter prior or the inter-domain transformation can be designed to have a specific harmonic structure
and therefore focus on a target spectrum. Second, the algorithm can be adapted to handle longer
time series, for instance, through the use of tree-structured approximations [26]. Third, the method
can also be extended beyond time series to operate on higher-dimensional input spaces; this can be
achieved by means of a factorisation of the latent kernel, whereby the number of inducing points for
the filter only increases linearly with the dimension, rather than exponentially.
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