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SUMMARY 


A n  invest igat ion o f  t h e  a b i l i t y  of a close-coupled canard posit ioned above 
t h e  wing plane t o  a c t  as a d i r e c t  side-force generator on a f i g h t e r  model has 
been conducted i n  t h e  Langley 16-foot t ransonic  tunnel  at 0' angle of s i d e s l i p .  
The canard panels had 5 O  of dihedral  and were def lected d i f f e r e n t i a l l y  or indi­
vidual ly  over an incidence range from 10' t o  -10' and a model angle-of-attack 
range from -bo t o  l5O. Mach number w a s  var ied from 0.40 t o  0.90. 

Signif icant  s i d e  forces  were generated by d i f f e r e n t i a l  and s ingle  canard-
panel def lect ions over t h e  Mach number and angle-of-attack ranges. The yawing 
moment r e s u l t i n g  from t h e  forward locat ion of the  generated s ide  force would 
necess i ta te  a v e r t i c a l  t a i l / r u d d e r  t r i m  force which would augment the  forebody 
s i d e ' f o r c e  and be of corriparable magnitude. Incremental s i d e  forces ,  yawing 
moments, l i f t ,  and p i tch ing  moments due t o  s ing le  canard-panel def lect ions were 
addi t ive ;  t h a t  i s ,  t h e i r  sums were e s s e n t i a l l y  t h e  same as t h e  forces and 
moments produced by d i f f e r e n t i a l  canard-panel def lect ions of the same magnitude. 
D i f f e r e n t i a l  and s i n g l e  canard-panel def lect ions produced negl ig ib le  r o l l i n g  
moments over t h e  Mach number and angle-of-attack ranges. 

INTRODUCTION 

The pursui t  of increased maneuverability f o r  f i g h t e r  a i r c r a f t  has r e s u l t e d  
i n  several  aerodynamic and propulsion features  which individual ly  or i n  combi­
nation can produce uncoupled d i r e c t  forces over a wide range of speeds and 
a t t i t u d e s .  Large d i r e c t  lift forces can be generated by wing maneuver f l a p s  
( t ra i l ing-edge f l a E s )  and engine t h r u s t  vectoring or by a combination of t h e  
two. Often, when these  two fea tures  a r e  combined, a canard (producing a posi­
tive. lift increment) i s  used t o  t r i m  t h e  nose-down pi tching moment from the  wing 
f laps  or vectored t h r u s t  ( including pi tching moment due t o  l i f t  induced by super-
c i r c u l a t i o n ) .  A benef i t  of a canard-wing system f o r  d i r e c t  l i f t  force i s  t h e  
a b i l i t y  t o  "point" t h e  a i r c r a f t  nose up o r  down (change angle of a t t a c k )  while 
maintaining a constant l i f t  coef f ic ien t .  

Invest igat ions of t h e  longi tudinal  aerodynamic e f f e c t s  of d i f f e r e n t  canard 
locat ions r e l a t i v e  t o  t h e  wing (refs. 1t o  4) ind ica te  t h a t  at subsonic speeds, 
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a close-coupled canard posi t ioned above t h e  wing plane general ly  has t h e  highest  
maximum lift capab i l i t y  and t h e  most l inear  pitching-moment curves. Deflection 
of t h e  canard f o r  t r i m  does not s ign i f i can t ly  increase t h e  t o t a l  lift of a con­
f igu ra t ion  at low angles of a t t a c k  because of t h e  e f f e c t  of t h e  canard flow f i e l d  
on t h e  wing (ref.  5) .  However, t h e  s t a l l  angle of a t t a c k ,  and the re fo re  t h e  
maximum lift capab i l i t y ,  f o r  t h e  canard-wing combination i s  considerably g rea t e r  
than f o r  t h e  wing alone. I n  addi t ion  t o  o f f e r ing  increased trimmed-lift capabil­
i t y  and possibly reduced trimmed drag at subsonic speeds, a close-coupled canard 
o f f e r s  t h e  p o t e n t i a l  f o r  lower drag at supersonic speeds because of an improved 
progression of cross-sectional area. 

Lateral-direct ional  maneuverability above t h a t  poss ib le  by conventional 
means, such as a i l e rons ,  s p o i l e r s ,  asymmetric drag devices,  v e r t i c a l  t a i l s / r u d d e r s ,  
and d i f f e r e n t i a l  s t a b i l i z e r  def lec t ions ,  can be provided by v e r t i c a l l y  mounted 
aerodynamic surfaces  ( d i r e c t  side-force generators)  ahead of t h e  a i r c r a f t  aero­
dynamic center .  Side force  produced by def lec t ion  of such a dedicated surface 
results i n  a yawing moment t h a t  can be trimmed with a v e r t i c a l  t a i l / r u d d e r  s ide  
force  which augments t h e  force  produced by t h e  forward cont ro l  surface.  With 
d i r e c t  side-force capab i l i t y ,  an a i r c r a f t  can maintain a given f l i g h t  d i r ec t ion  
and "point" i t s  nose t o  e i t h e r  s ide  (gun poin t ing)  at a desired s i d e s l i p  angle. 
Or, at  t h e  p i l o t ' s  opt ion,  an a i r c r a f t  can s ' ideslip t o  a p a r a l l e l  f l i g h t  path 
by a b r i e f  def lec t ion  of t h e  side-force generator.  Such maneuvering c a p a b i l i t i e s  
increase t h e  effect iveness  of an a i r c r a r t  i n  aerial combat, t a c t i c a l  s i t ua t ions  
against  f ixed  objec t ives ,  in - f l igh t  re fue l ing ,  and cross  wind landings (refs. 6 
t o  8 ) .  The aerodynamic cha rac t e r i s t i c s  of a swept-wing f i g h t e r  model incorpo­
r a t i n g  dedicated ven t r a l  d i r e c t  side-force generators on t h e  nose are presented 
i n  reference 9. 

The present inves t iga t ion  w a s  conducted t o  determine t h e  a b i l i t y  of a close-
coupled canard posi t ioned above t h e  wing plane f o r  l i f t  and t r i m  a t  maneuver 
conditions t o  a c t  a l so  as a d i r e c t  side-force generator.  D i f f e ren t i a l  def lec t ion  
of t h e  canard panels (or def lec t ion  of one panel)  c rea tes  a nonsymmetric flow 
f i e l d  about t h e  forward. fuselage which r e s u l t s  i n  a s i d e  force t h a t  would be 
augmented by t h e  required t r i m  force on t h e  v e r t i c a l  t a i l / rudde r .  Side-force 
generation i n  t h i s  manner provides t h e  l a t e ra l -d i r ec t iona l  maneuverability offered 
by dedicated ven t r a l  d i r e c t  side-force generators without t h e  addi t iona l  weight 
penal ty  or sk in  f r i c t i o n  drag. 

The inves t iga t ion  w a s  conducted i n  t h e  Langley 16-foot t ransonic  tunnel a t  
Mach numbers from 0.40 t o  0.90, angles of a t t ack  from -4' t o  15O, and a t  an angle 
of s i d e s l i p  of O o .  The model had a wing leading-edge sweep of 50°, a canard 
leading-edge sweep of 4 5 O ,  a canard dihedral  angle of 5O, and twin outboard ver­
t i c a l  t a i l s .  

The l e f t  and r i g h t  canard panels were def lected d i f f e r e n t i a l l y  a t  angles of 
+ 5 O  and +loo, and individual ly  a t  angles of loo and -10'. 

SYMBOLS 

A l l  aerodynamic coef f ic ien ts  a r e  referenced t o  t h e  body-axis system except 
l i f t  and drag coef f ic ien ts ,  which are referenced t o  t h e  wind-axis system. The 
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moment reference center  was located at a point  98.22 cm rearward of t h e  fuselage 
nose and i n  t h e  plane of t h e  uncambered wing. (See f i g .  1.) A l l  dimensions pre­
sented a r e  i n  t h e  In t e rna t iona l  System of Units ( S I ) .  

b reference wing span, 102.48 cm 

cD drag . coe f f i c i en t ,  Drag 
qs 


L i f t  
cL lift coe f f i c i en t ,  ­

* 	 C rolling-moment coef f ic ien t ,  Rolling moment 
z qsb 

C rolling-moment coef f ic ien t  due t o  d i f f e r e n t i a l  canard def lec t ion ,  -6 ,‘6 per  degree 

‘m pitching-moment coef f ic ien t ,  Pi tching moment 
-qSE 


‘n yawing-moment coef f ic ien t ,  Yawing moment 
qm 


u
C yawing-moment coe f f i c i en t  due t o  d i f f e r e n t i a l  canard def lec t ion ,  -6 ’  per  degree 

Side forceside-force coe f f i c i en t ,  
qs 

C canard e f fec t iveness  as a side-force generator,  -,6 per  degree
y6-

C wing mean geometric chord, 42.654 cm 


Cr root  chord, measured streamwise 


Ct t i p  chord, measured streamwise 

-
cV 

v e r t i c a l - t a i l  mean geometric chord, 23.170 cm 
-

&v longi tudina l  dis tance from model moment reference center  t o  cJ4,
37.17 cm 

M free-stream Mach dumber 

9 free-stream dynamic pressure 

S reference wing area, 0.3808 m2 

a angle of a t t ack ,  deg 

A increment i n  force o r  moment coe f f i c i en t  due t o  canard def lec t ion  
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t o t a l  canard-panel def lec t ion  angle (d i f fe rence  i n  def lect ion angle 
between l e f t  and r i g h t  canard panels , 6c ,Left - 6  ,Right , deg 

6C s i n g l e  canard-panel def lec t ion  angle,  pos i t i ve  leading edge up, deg 

DESCRIPTION OF MODEL 

The general  arrangement of t h e  model and fuselage external contours are 
shown i n  f igures  1 and 2,  respect ively.  A photograph showing t h e  sting-mounted 
model i n  t h e  wind-tunnel tes t  sec t ion  i s  presented i n  f igu re  3. 

The uncambered wing had an NACA 65A005 a i r f o i l  sec t ion  at t h e  wing-body 
juncture  and var ied  l i n e a r l y  i n  thickness t o  an NACA 65A004 a i r f o i l  sec t ion  a t  
t h e  wing t i p .  The wing had a leading-edge sweep of 50°, an aspect r a t i o  
of 2.759, a t ape r  r a t i o  of 0.2, and Oo dihe&al.  

The uncambered canard had an NACA 65AOO5 a i r f o i l  sec t ion  at t h e  canard-body 
juncture  and var ied l i n e a r l y  i n  thickness t o  an NACA 65AOO3 a i r f o i l  sect ion a t  
t h e  t i p .  The canard had a leading-edge sweep of 4 5 O ,  an aspect r a t i o  of 2.506, 
a t ape r  r a t i o  of 0.376, and 5 O  dihedral  when mounted on t h e  model. The canard-
panel ax is  of ro t a t ion  w a s  i n  a plane 66.68 cm rearward of  t h e  nose. The sur­
face of t h e  fuselage i n  t h e  v i c i n i t y  o f  t h e  canard root  w a s  bas i ca l ly  f l a t  i n  
t h e  plane perpendicular t o  t h e  canard ax is  of r o t a t i o n  ( f i g .  4 ) ,  s o  t h a t  as  t h e  
canard ro ta ted ,  only a s m a l l  gap occurred between t h e  canard leading edge and 
t h e  fuselage s ide .  The r a t i o  of exposed canard area t o  wing reference area w a s  
0.1943, and t h e  height of t h e  canard above the  wing reference plane a t  t h e  model 
plane of symmetry w a s  0.121C. 

The fuselage represents  t h a t  of a single-engine f i g h t e r  a i r c r a f t  having a 
chin i n l e t  ( f a i r e d  over,  see f i g .  1) and a nozzle geometry representing an after-
burning power s e t t i n g .  The i n l e t  w a s  f a i r e d  over because t h e  model was o r ig ina l ly  
designed f o r  high-pressure a i r  propulsion-simulation t e s t i n g  with a support-strut  
mounting system beneath t h e  nose. For t h e  present inves t iga t ion ,  t he  model w a s  
s t i n g  supported i n  t h e  tunnel .  The s t i n g  diameter w a s  6.35 cm at  the  model base.  

TESTS AND CORRECTIONS 

The inves t iga t ion  w a s  conducted i n  t h e  Langley 16-foot t ransonic  tunnel ,  a 
s ingle-return atmospheric wind tunnel  with continuous air  exchange. The s l o t t e d  
test  sec t ion  i s  octagonal i n  shape and measures 4.724 m between opposite w a l l s  
(an area equivalent t o  a c i r c l e  4.85 m i n  diameter).  The tunnel  sting-support 
system pivots  i n  such a manner t h a t  t h e  model remains on or near the  tes t - sec t ion  
center  l i n e  throughout t h e  angle-of-attack range. 

The model w a s  t e s t e d  a t  Mach numbers from 0.40 t o  0.90, at angles of a t t ack  
from -4O t o  15O, and at  a s i d e s l i p  angle of Oo Reynolds number, based on 
wing mean geometric chord, var ied from 3.4 X 10'6 at M = 0.40 t o  5.6 x IO6 
at M = 0.90. 
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Aerodynamic forces  and moments w e r e  measured by an i n t e r n a l  six-component 
strain-gage balance. Model angle of a t t ack  w a s  obtained by cor rec t ing  t h e  angle 
of t h e  model support s y s t e m  f o r  def lec t ion  of the s t i n g  and balance under aero­
dynamic loads and f o r  t e s t - sec t ion  stream angular i ty .  The force da ta  are 
adjusted t o  t h e  condition of free-stream s t a t i c  pressure at t h e  fuselage base. 

A l l  configurations w e r e  t e s t e d  with f ixed  boundary-layer t r a n s i t i o n  on t h e  
model surfaces .  The t rans i t ion- f ix ing  s t r i p s  consis ted of 0.25-cm-wide s t r a igh t -
l i n e  s t r i p s  of N o .  120 s i l i c o n  carbide g r i t  connecting poin ts  0 . 0 5 ~ ~and O.lOct 
a f t  of t h e  leading edges of t h e  wing, canard, and v e r t i c a l  tai ls .  The t r a n s i ­
t i o n  s t r i p s  on t h e  ven t r a l  f i n s  were loca ted  a t  a constant dis tance ( 0 . 0 5 ~ ~ )  
from t h e  leading edge. A t r a n s i t i o n b a n d  on t h e  fuselage nose w a s  located 
2.54 cm rearward of t h e  t i p  of t h e  nose. 

PRESENTATION OF RESULTS 

The da ta  obtained i n  t h i s  inves t iga t ion  a r e  presented i n  graphical  form. 
An ou t l ine  of t h e  contents of t h e  da ta  and ana lys i s  figures i s  as follows: 

Figure 

Effect  of d i f f e r e n t i a l  canard-panel def lec t ion  on model l a t e r a l  
aerodynamic coef f icient  s . . . . . . . . . . . . . . . . . . . . . . . .  5 

Effect  of d i f f e r e n t i a l  canard-panel def lec t ion  on model 
longi tudina l  aerodynamic coe f f i c i en t s  . . . . . . . . . . . . . . . . . .  6 

Effect  of d i f f e r e n t i a l  and s ing le  canard-panel def lec t ion  on 
model la teral  aerodynamic coe f f i c i en t s  . . . . . . . . . . . . . . . .  7 

Effect  of d i f f e r e n t i a l  and s ing le  canard-panel def lec t ion  on 
model l i f t  and pitching-mbment cha rac t e r i s t i c s  . . . . . . . . . . . .  8 

Effect  of d i f f e r e n t i a l  and s ing le  canard-panel def lec t ion  on 
model drag coe f f i c i en t  . . . . . . . . . . . . . . . . . . . . . . . .  9 

Variation with t o t a l  canard def lec t ion  angle o f  aerodynamic-coefficient 
increments due t o  d i f f e r e n t i a l  and s ing le  canard-panel def lec t ion  . . .  10 

Variation with angle of a t t ack  of model l a t e r a l  aerodynamic 
cha rac t e r i s t i c s  due t o  d i f f e r e n t i a l  canard-panel def lec t ion  . . . . . .  11 

Variation with angle of a t t ack  of trimmed (ca lcu la ted)  side-force 
coe f f i c i en t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
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DISCUSSION OF RESULTS 

D i f f e r e n t i a l  Canard-Panel Deflection 

"he lateral aerodynamic coef f ic ien ts  of t h e  model with d i f f e r e n t i a l  canard-
panel def lect ions ( f i g .  5 )  show t h a t  s i g n i f i c a n t  l e v e l s  of direct. s i d e  force 
were generated over t h e  angle-of-attack and Mach number ranges of t h i s  inves­
t iga t ion .  The yawing moment resu l t ing  from t h e  side force generated by a 
forward control  surface i s  i n  t h e  d i rec t ion  such t h a t  t h e  required v e r t i c a l  
t a i l / rudder  t r i m  force  would augment t h e  forebody s i d e  force.  For t h e  con­
f igura t ion  invest igated and t h e  moment reference center  se lec ted ,  t h e  magnitude 
of t h e  required trim force would be subs tan t ia l .  To i l l u s t r a t e  t h i s  simply, 
calculat ions of t r i m  increments were made by assuming t h a t  t h e  ver t ica l - ta iP  
force acted at one-quarter of t h e  t a i l  mean geometric chord Ev/4 and t h a t  t h e  
t a i l  moment arm Rv w a s  t h e  dis tance between t h a t  point  and t h e  model moment 
reference center .  The calculated increments are presented i n  f igure  12 and 
w e r e  made from t h e  following equation: 

ACy = f o r  canard deflected) - (C" f o r  canard at Oo 

However, t h e  reader i s  cautioned t h a t  t h e  t o t a l  value of side-force coef f ic ien t  
shown i n  f igure  12  i s  t h e  result of a simple ca lcu la t ion ,  and t h e  e f f e c t s  of 
s i d e s l i p  angle on t h e  model la teral  aerodynamic c h a r a c t e r i s t i c s  and on t h e  side­
force-generating c a p a b i l i t i e s  of t h e  canard could not be considered here.  

The effect iveness  parameters f o r  t h e  generation of s i d e  force and yawing 
moment by d i f f e r e n t i a l  canard def lect ion ( f i g .  5 )  are shown i n  figure l l ( a )  
f o r  25' def lec t ion  and l l ( b )  f o r  +loo deflect ion.  The two f igures  ind ica te  
about t h e  same side-force effect iveness  l e v e l  and var ia t ion  with angle of 
a t tack .  Yawing-moment effect iveness  f o r  flOo def lec t ion  w a s  considerably l e s s  
than' f o r  + 5 O  def lec t ion ,  although t h e  var ia t ion  with angle of a t t a c k  w a s  essen­
t i a l l y  t h e  same. 

D i f f e r e n t i a l  def lec t ion  of t h e  canard panels produced negl igible  r o l l i n g  
moment ( f i g s .  5 and 11). Apparently, t h e  canard and wing flow f i e l d s  i n t e r a c t  
i n  such a manner t h a t  t h e  r o l l i n g  moment on t h e  d i f f e r e n t i a l l y  def lected canard 
panels i s  counteracted by an opposite r o l l i n g  moment on t h e  wing resu l t ing  from 
t h e  canard wake. 

Di f fe ren t ia l  def lect ion of t h e  canard panels had a negl ig ib le  e f f e c t  on 
model l i f t  ( f i g .  6 )  a t  angles of a t tack up t o  about 6 O  but caused a s l i g h t  
decrease i n  l i f t -curve  slope a t  t h e  higher angles of a t tack ,  especial ly  at 
Mach numbers of 0.80 and 0.90. .Model longi tudinal  s t a b i l i t y  increased when 
t h e  canard panels were d i f f e r e n t i a l l y  def lected,  t h e  grea tes t  increase occur­
r ing  a t  the  lower Mach numbers. Zero-lif t  drag increased about 1 0  percent f o r  
25' deflect ion and between 60 and 70 percent f o r  +loo deflect ion.  
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Single Canard-Panel Deflection 

Deflection of a s ing le  canard panel w a s  e f f ec t ive  i n  t h e  generation of 
s ign i f i can t  s i d e  forces  while producing negl ig ib le  r o l l i n g  moments ( f i g .  7 ) .  
Negative (leading-edge down) def lec t ion  of a canard panel produced subs t an t i a l ly  
g rea t e r  s i d e  forces  and yawing moments than an equal pos i t i ve  def lec t ion .  Com­
parison of t h e  sums of t h e  side-force and yawing-moment increments due t o  s ing le  
panel deflecti .ons i n  opposite d i rec t ions  (dashed l i n e s  i n  f i g .  7 )  ind ica tes  
t h a t  the results are addi t ive ;  t h a t  i s ,  e s s e n t i a l l y  t h e  same forces and moments 
were measured f o r  d i f f e r e n t i a l  def lec t ions  of t h e  same magnitude. The e f f e c t  
of angle of a t t ack  on the side-force-generating c a p a b i l i t i e s  of s ing le  panel 

d 	 def lec t ions  i s  l a r g e  i n  t h a t ,  at 14O angle of a t t a c k ,  t h e  upward (pos i t i ve ly )  
def lec ted  panel produces very l i t t l e  s ide  force at a Mach number of 0.40 and 
negative s ide  force  at a Mach number of 0.90. 

The lift and pitching-moment cha rac t e r i s t i c s  of t h e  model for s ingle  
canard-panel def lec t ions  ( f i g .  8)  a l s o  ind ica t e  that t h e  force  and moment incre­
ments from s ing le  canard-panel def lec t ions  i n  opposite d i rec t ions  are addi t ive .  
That i s ,  e s s e n t i a l l y  the same l i f t  and p i tch ing  moment (dashed l i n e  i n  f i g .  8 )  
are obtained by adding single-panel increments as are measured f o r  d i f f e r e n t i a l  
def lec t ions  of t h e  same magnitude. 

A minor instrumentation problem prevented acquis i t ion  of drag data  with 
s ing le  canard-panel def lec t ions  t o  t h e  same accuracy as with t h e  d i f f e r e n t i a l  
def lec t ions .  However, accurate  drag da ta  fo r  both. canard panels def lec ted  -5O, 

5O,  loo (not shown) , and 0' and d i f f e r e n t i a l l y  def lec ted  -15O and ?loo have 
been used t o  ad jus t  t h e  drag polar  l eve l s  of configurations with s ing le  panel 
def lec t ions  of 10' and -10'. The da ta  f o r  both panels def lec ted  -5O, O o ,  
and 5' were used t o  v e r i f y  t h a t  drag increments due t o  canard def lec t ion  could 
be used t o  ca l cu la t e  t h e  drag with d i f f e r e n t i a l  canard def lec t ion  ( t h e  measured 
drag da ta  fo r  -15' d e f l e c t i o n ) .  Then, assuming t h a t  t h e  drag increments were 
s t i l l  addi t ive  f o r  t h e  l a r g e r  canard def lec t ions  (loo), t h e  da ta  f o r  canard 
def lect ions of 0 0 ,  100, and ?lo0 were used t o  ca l cu la t e  t h e  minimum drag f o r  
t h e  s ing le  canard-panel def lec t ions .  The experimentally determined drag polars  
f o r  s ing le  canard-panel def lec t ions  were adjusted t o  the  calculated minimum 
drag l e v e l s ,  so t h a t  only the minimum drag l e v e l s  were changed and not t h e  shape 
of t he  polars .  (See f i g .  9 . )  

What i s  most s i g n i f i c a n t  i n  f igu re  9 i s  t h e  r o t a t i o n  of t h e  model drag 
polars  due t o  s ing le  canard-panel def lec t ion ,  Downward def lec t ion  of a canard 
panel t o  -loo increased t h e  minimum drag, s h i f t e d  it t o  a higher lift coef f i ­
c i e n t ,  and reduced t h e  drag due t o  lift such t h a t  at lift coe f f i c i en t s  of 0.3 
and above, t h e  drag w a s  e s s e n t i a l l y  the .  same as t h a t  with no canard def lec t ion .  
If an optimized minimum drag were des i red  at some combined side-force and lift 
condi t ion,  t h e  la teral  and longi tudina l  trim-drag increments t h a t  would OCCUT 
would have t o  be considered i n  order t o  determine t h e  appropriate  canard-panel 
def lec t ions .  
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Aerodynamic-Coefficient Increments 

The va r i a t ion  of t h e  aerodynamic-coefficient increments with t o t a l  canard 
def lec t ion  angle i s  shown i n  f igure  10. The symbols are not ac tua l  da ta  poin ts  
but w e r e  in te rpola ted  at even angles of a t t ack  from f igures  '5 t o  8. In  f a i r i n g  
t h e  incremental da t a ,  only t h e  da ta  f o r  d i f f e r e n t i a l  canard def lec t ion  w e r e  
considered . 

Examination of t h e  increments i n  f igu re  10  i l l u s t r a t e s  t h a t  single-panel 
increments a re  e s s e n t i a l l y  addi t ive  for s i d e  force , yawing moment , l i f t ,  and 
p i tch ing  moment. It i s  a l s o  apparent t h a t  within t h e  range of t h i s  invest iga­
t i o n ¶  t h e  va r i a t ion  of s ide  force with d i f f e r e n t i a l  canard def lec t ion  i s  
l i n e a r .  

SUMMARY OF RESULTS 

An inves t iga t ion  of t h e  a b i l i t y  of a close-coupled canard posi t ioned above 
t h e  wing plane t o  a c t  as a d i r e c t  side-force generator on a f i g h t e r  model has 
been conducted a t  Mach numbers from 0.40 t o  0.90 a t  0' angle of s i d e s l i p .  The 
canard panels had 5 O  of dihedral  and were def lected d i f f e r e n t i a l l y  or individ­
ua l ly  i n  an incidence range from 10' t o  -10' over a model angle-of-attack 
range from -bo t o  15'. The r e s u l t s  of t he  inves t iga t ion  may be summarized as 
follows : 

1. Signi f icant  s i d e  forces  were generated by d i f f e r e n t i a l  and s ing le  
canard-panel def lec t ions  over t h e  Mach number and angle-of-attack ranges 
invest igated.  

2. The yawing moment r e su l t i ng  from t h e  forward loca t ion  of t h e  s i d e  force 
would necess i ta te  a v e r t i c a l  t a i l / rudde r  t r i m  force  which would augment t h e  
forebody side force and be of comparable magnitude. 

3. Incremental s ide  forces ¶ yawing moments ¶ l i f t  , and p i tch ing  moments 
due t o  s ing le  canard-panel def lect ions were add i t ive ;  t h a t  i s ,  t h e i r  sums were 
e s sen t i a l ly  t h e  same as t h e  forces and moments produced by d i f f e r e n t i a l  canard-
panel def lec t ion  of t h e  same magnitude. 

4. Dif fe ren t i a l  and s ing le  canard-panel def lect ions produced negl ig ib le  
r o l l i n g  moments over t h e  Mach number and angle-of-attack ranges invest igated.  

Langley Research Center 
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Figure 1.- General arrangement of model. (All dimensions are in centimeters 

unless otherwise indicated.) 
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Fi.gure 2.- Fuselage external contours. (All stations are in centimeters.) 
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Figure 4.- Relative o r i en ta t ion  of canard-panel axis of 
r o t a t i o n  t o  the  canard plane. 

13 




(a) M = 0.40. 

Figure 5.- Effect of differential canard-panel deflection 

on model lateral aerodynamic coefficients. 




(b) M = 0.60. 

Figure 5.- Continued. 
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Figure 5.- Continued. 
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(d) M = 0.90. 

Figure 5.- Concluded. 
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(a) M = 0.40. 

Figure 6.- Effect of differential canard-panel deflection on 

model longitudinal aerodynamic coefficients. 
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Figure 6 . - Continued. 
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(a) M = 0.40. 

Figure 7.- Effect of differential and single canard-panel deflection on model 

lateral aerodynamic coefficients. Dashed lines indicate sums of side-force 

and yawing-moment increments due to single panel deflection. 
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Figure 7.- Concluded. 
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(a) M = 0.40. 

Figure 8.- Effect of differential and single canard-panel deflection on model 

lift and pitching-moment characteristics. Dashed lines indicate sum of 

pitching-moment increments due to single panel deflection. 
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Figure 9 . - Effect of 	differential and single canard-panel deflection 
on model drag coefficient. .  
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Figure 10.- Variation with total canard deflection angle of aerodynamic-coefficient 

increments due to differential and single canard-panel deflection. 




bC’ deg 
Left Right 

0 5 -5 
0 -10 

0 10 0 
A 10 -10 

M=O.80 

a - -3OFI I I I i I I I I I 
.o 

.o 

-a 120 

.Ol M 

0
0 4 8 12 16 20 0 4 8 12 16 20 

(b) ACn 

Figure 10.- Continued. 

.02 



-- 

bC, de9 
Left Right 

0 .5 

0 0 

0 10 

A 10 


M = 0.60


I-- D - -30 

.02 

0 


. . 
a.CP 

.02 

0 

0.40 

.02 

0 
fib,--- ____ 

.02 


0 

_- __ 


0 - 120 


-5 

-10 

0 
-10 

M=O.80 

a m - ?I-1 


a - 4 0  
I 


I n = 120 


I
075;4 8 12 16 20
4 8 12 16 2 0 0Liz
0 4 8 12 16 20 


6,deg 




! 


w 
0 

0 5 -5 
0 0 -10 
0 10 0 

-10 
M-0.80 

.04 


0 

Figure 10.- Continued. 



0 5 -5 
0 0 -10 
0 10 0 
A 10 -10 

M-0.M M - 0 . W  M - 0 . 8 0  

-.m 

0 4 8 12 16 20 

I l l 1 0 - 1 P l l l 

0 4 8 12 16 20 

6. deg 6, deg 

(e> AcD 

Figure 10.- Continued, 

I 0 - 1 P .  I I I I 

0 4 8 12 16 20 

6. deg 

0 



w 
Iu 

bcndeg 

Lefl Right 

0 5 -5 
0 0 -10 
0 10 0 

.1 
M-0.40 M - 0.60 

A 10 -10 
M.P.80 
a - - P  

M -0.W 

0 


Figure 10.- Concluded. 




C 

"6 


Figure 11.- Variation with angle of attack of model lateral aerodynamic 

characteristics due to differential canard-panel deflection. 
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