CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Inactive alleles of cytochrome P450 2C19 may be positively selected in human evolution Genome evolution and evolutionary systems biology
Authors
RE Janha
KJ Linton
+4 more
SO Shaheen
F Sisay-Joof
RT Walton
A Worwui
Publication date
1 January 2014
Publisher
'Springer Science and Business Media LLC'
Doi
View
on
PubMed
Abstract
© 2014 Janha et al.; licensee BioMed Central Ltd.Background: Cytochrome P450 CYP2C19 metabolizes a wide range of pharmacologically active substances and a relatively small number of naturally occurring environmental toxins. Poor activity alleles of CYP2C19 are very frequent worldwide, particularly in Asia, raising the possibility that reduced metabolism could be advantageous in some circumstances. The evolutionary selective forces acting on this gene have not previously been investigated. We analyzed CYP2C19 genetic markers from 127 Gambians and on 120 chromosomes from Yoruba, Europeans and Asians (Japanese + Han Chinese) in the Hapmap database. Haplotype breakdown was explored using bifurcation plots and relative extended haplotype homozygosity (REHH). Allele frequency differentiation across populations was estimated using the fixation index (FST) and haplotype diversity with coalescent models. Results: Bifurcation plots suggested conservation of alleles conferring slow metabolism (CYP2C19∗2 and ∗3). REHH was high around CYP2C19∗2 in Yoruba (REHH 8.3, at 133.3 kb from the core) and to a lesser extent in Europeans (3.5, at 37.7 kb) and Asians (2.8, at -29.7 kb). FST at the CYP2C19 locus was low overall (0.098). CYP2C19∗3 was an FST outlier in Asians (0.293), CYP2C19 haplotype diversity ST is low at the CYP2C19 locus, suggesting balancing selection overall. The biological factors responsible for these selective pressures are currently unknown. One possible explanation is that early humans were exposed to a ubiquitous novel toxin activated by CYP2C19. The genetic adaptation took place within the last 10,000 years which coincides with the development of systematic agricultural practices.This work was supported by the Medical Research Council Unit The Gambia and the European and Developing Countries Clinical Trials Partnership [grant number CG_ta_05_40204_018]
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Springer - Publisher Connector
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 28/04/2017
Warwick Research Archives Portal Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:wrap.warwick.ac.uk:94377
Last time updated on 01/12/2017
Springer - Publisher Connector
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 04/06/2019
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1186%2F1471-2148-1...
Last time updated on 01/04/2019
Supporting member
Queen Mary Research Online
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:qmro.qmul.ac.uk:123456789/...
Last time updated on 05/04/2016
Supporting member
Queen Mary Research Online
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:qmro.qmul.ac.uk:123456789/...
Last time updated on 05/04/2016