32 research outputs found
Zum Alter des Plaggeneschs
Der Plaggenesch entstand durch jahrhundertelange Düngung mit Plaggendung, der hauptsächlich aus Plaggen, d. h. flach abgehackten Heide- oder Grasstücken, und Stalldung bestand. Dadurch wurde der Ap-Horizont über dem ursprünglichen Bodentyp immer mächtiger bis zu 80 cm und mehr, und damit entstand der anthropogene Bodentyp „Plaggenesch". Entstehung, Aufbau, Eigenschaften und Verbreitung des Plaggeneschs werden beschrieben. Es wird geschildert, wie man das Alter, den Beginn der Plaggendüngung feststellen kann. Hinweise geben Ortsnamen, die Geschichte der Ackerkultur sowie Scherben und andere Funde. Eine direkte Altersbestimmung erlaubt die 14C-Methode, indessen ist sie mit Fehlern behaftet, da die organische Masse der Plaggenesche nicht einheitlich ist, d. h. ein verschiedenes Alter haben kann. Es wird daher nur ein Mittelwert erzielt. Unter Beachtung aller Fehlerquellen wird auf Grund der bisher gewonnenen 14C-Werte das Alter der Plaggenesche, d. h. der Beginn der Plaggendüngung, mit etwa 800—1200 Jahren angenommen. Dieses Alter stimmt mit den vorher auf anderem Weg gewonnenen Altersdatierungen einigermaßen überein.researc
Reentrant charge ordering caused by polaron formation
Based on a two-dimensional extended Hubbard model with electron-phonon
interaction, we have studied the effect of polaron formation on the charge
ordering (CO) transition. It is found that for fully ferromagnetically ordered
spins the CO state may go through a process of appearance, collapse and
reappearance with decreasing temperature. This is entirely due to a
emperature-dependent polaron bandwidth. On the other hand, when a paramagnetic
spin state is considered, only a simple reentrant behavior of the CO transition
is found, which is only partly due to polaron effect. This model is proposed as
an explanation of the observed reentrant behavior of the CO transition in the
layered manganite LaSrMnO.Comment: 4 pages, 2 eps figures, revised version accepted by Phys. Rev. Let
The Numerical Renormalization Group Method for correlated electrons
The Numerical Renormalization Group method (NRG) has been developed by Wilson
in the 1970's to investigate the Kondo problem. The NRG allows the
non-perturbative calculation of static and dynamic properties for a variety of
impurity models. In addition, this method has been recently generalized to
lattice models within the Dynamical Mean Field Theory. This paper gives a brief
historical overview of the development of the NRG and discusses its application
to the Hubbard model; in particular the results for the Mott metal-insulator
transition at low temperatures.Comment: 14 pages, 7 eps-figures include
The extended Hubbard model in the ionic limit
In this paper, we study the Hubbard model with intersite Coulomb interaction
in the ionic limit (i.e. no kinetic energy). It is shown that this model is
isomorphic to the spin-1 Ising model in presence of a crystal field and an
external magnetic field. We show that for such models it is possible to find,
for any dimension, a finite complete set of eigenoperators and eigenvalues of
the Hamiltonian. Then, the hierarchy of the equations of motion closes and
analytical expressions for the relevant Green's functions and correlation
functions can be obtained. These expressions are formal because these functions
depend on a finite set of unknown parameters, and only a set of exact relations
among the correlation functions can be derived. In the one-dimensional case we
show that by means of algebraic constraints it is possible to obtain extra
equations which close the set and allow us to obtain a complete exact solution
of the model. The behavior of the relevant physical properties for the 1D
system is reported.Comment: 19 pages, 9 figures, 16 panel
Charge-order transition in the extended Hubbard model on a two-leg ladder
We investigate the charge-order transition at zero temperature in a two-leg
Hubbard ladder with additional nearest-neighbor Coulomb repulsion V using the
Density Matrix Renormalization Group technique. We consider electron densities
between quarter and half filling. For quarter filling and U=8t, we find
evidence for a continuous phase transition between a homogeneous state at small
V and a broken-symmetry state with "checkerboard" [wavevector Q=(pi,pi)] charge
order at large V. This transition to a checkerboard charge-ordered state
remains present at all larger fillings, but becomes discontinuous at
sufficiently large filling. We discuss the influence of U/t on the transition
and estimate the position of the tricritical points.Comment: 4 pages, 5 figs, minor changes, accepted for publication in PRB R
Charge ordering and antiferromagnetic exchange in layered molecular crystals of the theta type
We consider the electronic properties of layered molecular crystals of the
type theta-DA, where A is an anion and D is a donor molecule such as
BEDT-TTF [where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene)] which is
arranged in the theta type pattern within the layers. We argue that the
simplest strongly correlated electron model that can describe the rich phase
diagram of these materials is the extended Hubbard model on the square lattice
at a quarter filling. In the limit where the Coulomb repulsion on a single site
is large, the nearest-neighbour Coulomb repulsion, V, plays a crucial role.
When V is much larger than the intermolecular hopping integral t the ground
state is an insulator with charge ordering. In this phase antiferromagnetism
arises due to a novel fourth-order superexchange process around a plaquette on
the square lattice. We argue that the charge ordered phase is destroyed below a
critical non-zero value V, of the order of t. Slave boson theory is used to
explicitly demonstrate this for the SU(N) generalisation of the model, in the
large N limit. We also discuss the relevance of the model to the all-organic
family beta''-(BEDT-TTF)SFYSO where Y = CHCF, CH, CHF.Comment: 15 pages, 6 eps figure
Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods
We theoretically describe the charge ordering (CO) metal-insulator transition
based on a quasi-one-dimensional extended Hubbard model, and investigate the
finite temperature () properties across the transition temperature, . In order to calculate dependence of physical quantities such as the
spin susceptibility and the electrical resistivity, both above and below
, a theoretical scheme is developed which combines analytical
methods with numerical calculations. We take advantage of the renormalization
group equations derived from the effective bosonized Hamiltonian, where Lanczos
exact diagonalization data are chosen as initial parameters, while the CO order
parameter at finite- is determined by quantum Monte Carlo simulations. The
results show that the spin susceptibility does not show a steep singularity at
, and it slightly increases compared to the case without CO because
of the suppression of the spin velocity. In contrast, the resistivity exhibits
a sudden increase at , below which a characteristic dependence
is observed. We also compare our results with experiments on molecular
conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure
Finite temperature numerical renormalization group study of the Mott-transition
Wilson's numerical renormalization group (NRG) method for the calculation of
dynamic properties of impurity models is generalized to investigate the
effective impurity model of the dynamical mean field theory at finite
temperatures. We calculate the spectral function and self-energy for the
Hubbard model on a Bethe lattice with infinite coordination number directly on
the real frequency axis and investigate the phase diagram for the Mott-Hubbard
metal-insulator transition. While for T<T_c approx 0.02W (W: bandwidth) we find
hysteresis with first-order transitions both at U_c1 (defining the insulator to
metal transition) and at U_c2 (defining the metal to insulator transition), at
T>T_c there is a smooth crossover from metallic-like to insulating-like
solutions.Comment: 10 pages, 9 eps-figure
Phase diagram of the quarter-filled extended Hubbard model on a two-leg ladder
We investigate the ground-state phase diagram of the quarter-filled Hubbard
ladder with nearest-neighbor Coulomb repulsion V using the Density Matrix
Renormalization Group technique. The ground-state is homogeneous at small V, a
``checkerboard'' charge--ordered insulator at large V and not too small on-site
Coulomb repulsion U, and is phase-separated for moderate or large V and small
U. The zero-temperature transition between the homogeneous and the
charge-ordered phase is found to be second order. In both the homogeneous and
the charge-ordered phases the existence of a spin gap mainly depends on the
ratio of interchain to intrachain hopping. In the second part of the paper, we
construct an effective Hamiltonian for the spin degrees of freedom in the
strong-coupling charge-ordered regime which maps the system onto a frustrated
spin chain. The opening of a spin gap is thus connected with spontaneous
dimerization.Comment: 12 pages, 13 figures, submitted to PRB, presentation revised, new
results added (metallic phase at small U and V
Theoretical Aspects of Charge Ordering in Molecular Conductors
Theoretical studies on charge ordering phenomena in quarter-filled molecular
(organic) conductors are reviewed. Extended Hubbard models including not only
the on-site but also the inter-site Coulomb repulsion are constructed in a
straightforward way from the crystal structures, which serve for individual
study on each material as well as for their systematic understandings. In
general the inter-site Coulomb interaction stabilizes Wigner crystal-type
charge ordered states, where the charge localizes in an arranged manner
avoiding each other, and can drive the system insulating. The variety in the
lattice structures, represented by anisotropic networks in not only the
electron hopping but also in the inter-site Coulomb repulsion, brings about
diverse problems in low-dimensional strongly correlated systems. Competitions
and/or co-existences between the charge ordered state and other states are
discussed, such as metal, superconductor, and the dimer-type Mott insulating
state which is another typical insulating state in molecular conductors.
Interplay with magnetism, e.g., antiferromagnetic state and spin gapped state
for example due to the spin-Peierls transition, is considered as well. Distinct
situations are pointed out: influences of the coupling to the lattice degree of
freedom and effects of geometrical frustration which exists in many molecular
crystals. Some related topics, such as charge order in transition metal oxides
and its role in new molecular conductors, are briefly remarked.Comment: 21 pages, 19 figures, to be published in J. Phys. Soc. Jpn. special
issue on "Organic Conductors"; figs. 4 and 11 replaced with smaller sized
fil