197 research outputs found

    Benthic trophic interactions in an Antarctic shallow water ecosystem affected by recent glacier retreat

    Get PDF
    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (d13C and d15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased connectedness and resource recycling

    Using Virtual Reality to Rehabilitate Neglect

    Get PDF
    Purpose: Virtual Reality (VR) platforms gained a lot of attention in the rehabilitation field due to their ability to engage patients and the opportunity they offer to use real world scenarios. As neglect is characterized by an impairment in exploring space that greatly affects daily living, VR could be a powerful tool compared to classical paper and pencil tasks and computer training. Nevertheless, available platforms are costly and obstructive. Here we describe a low cost platform for neglect rehabilitation, that using consumer equipments allows the patient to train at home in an intensive fashion. Method: We tested the platform on IB, a chronic neglect patient, who did not benefit from classical rehabilitation. Results: Our results show that IB improved both in terms of neglect and attention. Importantly, these ameliorations lasted at a follow up evaluation 5 months after the last treatment session and generalized to everyday life activities. Conclusions: VR platforms built using equipment technology and following theoretical principles on brain functioning may induce greater ameliorations in visuo-spatial deficits than classical paradigms possibly thanks to the real world scenarios in association with the "visual feedback" of the patient's own body operating in the virtual environmen

    GRB 081028 and its late-time afterglow re-brightening

    Get PDF
    ‘The definitive version is available at www3.interscience.wiley.com '. Copyright Royal Astronomical SocietySwift captured for the first time a smoothly rising X-ray re-brightening of clear non-flaring origin after the steep decay in a long gamma-ray burst (GRB): GRB 081028. A rising phase is likely present in all GRBs but is usually hidden by the prompt tail emission and constitutes the first manifestation of what is later to give rise to the shallow decay phase. Contemporaneous optical observations reveal a rapid evolution of the injection frequency of a fast cooling synchrotron spectrum through the optical band, which disfavours the afterglow onset (start of the forward shock emission along our line of sight when the outflow is decelerated) as the origin of the observed re-brightening. We investigate alternative scenarios and find that the observations are consistent with the predictions for a narrow jet viewed off-axis. The high on-axis energy budget implied by this interpretation suggests different physical origins of the prompt and (late) afterglow emission. Strong spectral softening takes place from the prompt to the steep decay phase: we track the evolution of the spectral peak energy from the γ-rays to the X-rays and highlight the problems of the high latitude and adiabatic cooling interpretations. Notably, a softening of both the high and low spectral slopes with time is also observed. We discuss the low on-axis radiative efficiency of GRB 081028 comparing its properties against a sample of Swift long GRBs with secure Eγ,iso measurements.Peer reviewe

    Comparison of clinical and angiographic prognostic risk scores in elderly patients presenting with acute coronary syndrome and referred for percutaneous coronary intervention.

    Get PDF
    BACKGROUND: Multiple risk prediction models have been validated in all-age patients presenting with acute coronary syndrome (ACS) and treated with percutaneous coronary intervention (PCI); however, they have not been validated specifically in the elderly. METHODS: We calculated the GRACE (Global Registry of Acute Coronary Events) score, the logistic EuroSCORE, the AMIS (Acute Myocardial Infarction Swiss registry) score, and the SYNTAX (Synergy between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery) score in a consecutive series of 114 patients ≥75 years presenting with ACS and treated with PCI within 24 hours of hospital admission. Patients were stratified according to score tertiles and analysed retrospectively by comparing the lower/mid tertiles as an aggregate group with the higher tertile group. The primary endpoint was 30-day mortality. Secondary endpoints were the composite of death and major adverse cardiovascular events (MACE) at 30 days, and 1-year MACE-free survival. Model discrimination ability was assessed using the area under receiver operating characteristic curve (AUC). RESULTS: Thirty-day mortality was higher in the upper tertile compared with the aggregate lower/mid tertiles according to the logistic EuroSCORE (42% vs 5%; odds ratio [OR] = 14, 95% confidence interval [CI] = 4-48; p <0.001; AUC = 0.79), the GRACE score (40% vs 4%; OR = 17, 95% CI = 4-64; p <0.001; AUC = 0.80), the AMIS score (40% vs 4%; OR = 16, 95% CI = 4-63; p <0.001; AUC = 0.80), and the SYNTAX score (37% vs 5%; OR = 11, 95% CI = 3-37; p <0.001; AUC = 0.77). CONCLUSIONS: In elderly patients presenting with ACS and referred to PCI within 24 hours of admission, the GRACE score, the EuroSCORE, the AMIS score, and the SYNTAX score predicted 30 day mortality. The predictive value of clinical scores was improved by using them in combination

    Lag-luminosity relation in gamma-ray burst X-ray flares: a direct link to the prompt emission

    Full text link
    The temporal and spectral analysis of 9 bright X-ray flares out of a sample of 113 flares observed by Swift reveals that the flare phenomenology is strictly analogous to the prompt gamma-ray emission: high energy flare profiles rise faster, decay faster and peak before the low energy emission. However, flares and prompt pulses differ in one crucial aspect: flares evolve with time. As time proceeds flares become wider, with larger peak lag, lower luminosities and softer emission. The flare spectral peak energy E_{p,i} evolves to lower values following an exponential decay which tracks the decay of the flare flux. The two flares with best statistics show higher than expected isotropic energy E_{iso} and peak luminosity L_{p,iso} when compared to the E_{p,i}-E_{iso} and E_{p,i}-L_{iso} prompt correlations. E_{p,i} is found to correlate with L_{iso} within single flares, giving rise to a time resolved E_{p,i}(t)-L_{iso}(t). Like prompt pulses, flares define a lag-luminosity relation: L_{p,iso}^{0.3-10 keV} t_{lag}^{-0.95+/-0.23}. The lag-luminosity is proven to be a fundamental law extending 5 decades in time and 5 in energy. Moreover, this is direct evidence that GRB X-ray flares and prompt gamma-ray pulses are produced by the same mechanism. Finally we establish a flare-afterglow morphology connection: flares are preferentially detected superimposed to one-break or canonical X-ray afterglows.Comment: MNRAS accepte

    Unveiling the origin of X-ray flares in Gamma-Ray Bursts

    Full text link
    We present an updated catalog of 113 X-ray flares detected by Swift in the ~33% of the X-ray afterglows of Gamma-Ray Bursts (GRB). 43 flares have a measured redshift. For the first time the analysis is performed in 4 different X-ray energy bands, allowing us to constrain the evolution of the flare temporal properties with energy. We find that flares are narrower at higher energies: their width follows a power-law relation w~E^{-0.5} reminiscent of the prompt emission. Flares are asymmetric structures, with a decay time which is twice the rise time on average. Both time scales linearly evolve with time, giving rise to a constant rise-to-decay ratio: this implies that both time scales are stretched by the same factor. As a consequence, the flare width linearly evolves with time to larger values: this is a key point that clearly distinguishes the flare from the GRB prompt emission. The flare 0.3-10 keV peak luminosity decreases with time, following a power-law behaviour with large scatter: L_{pk}~ t_{pk}^{-2.7}. When multiple flares are present, a global softening trend is established: each flare is on average softer than the previous one. The 0.3-10 keV isotropic energy distribution is a log-normal peaked at 10^{51} erg, with a possible excess at low energies. The flare average spectral energy distribution (SED) is found to be a power-law with spectral energy index beta~1.1. These results confirmed that the flares are tightly linked to the prompt emission. However, after considering various models we conclude that no model is currently able to account for the entire set of observations.Comment: MNRAS submitte
    corecore