53 research outputs found

    Multiproxy characterization of high energy layers in the nner continental shelf of Quarteira (Southern Portugal) - Preliminary results

    Get PDF
    The occurrence of sedimentary layers indicating high energy events is common in the continental shelves sedimentary record. Their presence has been usually related either to tsunami waves or storm waves. In both cases, the identification of the transport mechanism requires a variety of proxies. This work presents the preliminary results of the analysis of a gravity core (MW-107) collected at ca. 57 m water depth in the inner continental shelf of Quarteira (Algarve) and aims to identify potential high energy events.IPMA-2020-011-BIinfo:eu-repo/semantics/publishedVersio

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    Get PDF
    The shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiver sity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxo nomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world’s known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world’s most biodiverse countries. We further identify collection gaps and summarize future goals that extend be yond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still un equally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the coun try. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora.Fil: Gomes da Silva, Janaina. Jardim Botânico do Rio de Janeiro: Rio de Janeiro, BrasilFil: Filardi, Fabiana L.R. Jardim Botânico do Rio de Janeiro; BrasilFil: Barbosa, María Regina de V. Universidade Federal da Paraíba: Joao Pessoa; BrasilFil: Baumgratz, José Fernando Andrade. Jardim Botânico do Rio de Janeiro; BrasilFil: de Mattos Bicudo, Carlos Eduardo. Instituto de Botânica. Núcleo de Pesquisa em Ecologia; BrasilFil: Cavalcanti, Taciana. Empresa Brasileira de Pesquisa Agropecuária Recursos Genéticos e Biotecnologia; BrasilFil: Coelho, Marcus. Prefeitura Municipal de Campinas; BrasilFil: Ferreira da Costa, Andrea. Federal University of Rio de Janeiro. Museu Nacional. Department of Botany; BrasilFil: Costa, Denise. Instituto de Pesquisas Jardim Botanico do Rio de Janeiro; BrasilFil: Dalcin, Eduardo C. Rio de Janeiro Botanical Garden Research Institute; BrasilFil: Labiak, Paulo. Universidade Federal do Parana; BrasilFil: Cavalcante de Lima, Haroldo. Jardim Botânico do Rio de Janeiro; BrasilFil: Lohmann, Lucia. Universidade de São Paulo; BrasilFil: Maia, Leonor. Universidade Federal de Pernambuco; BrasilFil: Mansano, Vidal de Freitas. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro; Brasil. Jardim Botânico do Rio de Janeiro; BrasilFil: Menezes, Mariângela. Federal University of Rio de Janeiro. Museu Nacional. Department of Botany; BrasilFil: Morim, Marli. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro; BrasilFil: Moura, Carlos Wallace do Nascimento. Universidade Estadual de Feira de Santana. Department of Biological Science; BrasilFil: Lughadha, Eimear NIck. Royal Botanic Gardens; Reino UnidoFil: Peralta, Denilson. Instituto de Pesquisas Ambientais; BrazilFil: Prado, Jefferson. Instituto de Pesquisas Ambientais; BrasilFil: Roque, Nádia. Universidade Federal da Bahia; BrasilFil: Stehmann, Joao. Universidade Federal de Minas Gerais; BrasilFil: da Silva Sylvestre, Lana. Universidade Federal do Rio de Janeiro; BrasilFil: Trierveiler-Pereira, Larissa. Universidade Estadual de Maringá. Departamento de Análises Clínicas e Biomedicina; BrasilFil: Walter, Bruno Machado Teles. EMBRAPA Cenargen Brasília; BrasilFil: Zimbrão, Geraldo. Universidade Federal do Rio de Janeiro; BrasilFil: Forzza, Rafaela C. Jardim Botânico do Rio de Janeiro; BrasilFil: Morales, Matías. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Morón. Facultad de Agronomía y Ciencias Agroalimentarias; Argentin

    Microglia/Astrocytes–Glioblastoma Crosstalk: Crucial Molecular Mechanisms and Microenvironmental Factors

    Get PDF
    In recent years, the functions of glial cells, namely, astrocytes and microglia, have gained prominence in several diseases of the central nervous system, especially in glioblastoma (GB), the most malignant primary brain tumor that leads to poor clinical outcomes. Studies showed that microglial cells or astrocytes play a critical role in promoting GB growth. Based on the recent findings, the complex network of the interaction between microglial/astrocytes cells and GB may constitute a potential therapeutic target to overcome tumor malignancy. In the present review, we summarize the most important mechanisms and functions of the molecular factors involved in the microglia or astrocytes–GB interactions, which is particularly the alterations that occur in the cell’s extracellular matrix and the cytoskeleton. We overview the cytokines, chemokines, neurotrophic, morphogenic, metabolic factors, and non-coding RNAs actions crucial to these interactions. We have also discussed the most recent studies regarding the mechanisms of transportation and communication between microglial/astrocytes – GB cells, namely through the ABC transporters or by extracellular vesicles. Lastly, we highlight the therapeutic challenges and improvements regarding the crosstalk between these glial cells and GB

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    corecore