3,118 research outputs found
The weight of time: gravitational force enhances discrimination of visual motion duration
In contrast with the anisotropies in spatial and motion vision, anisotropies in the perception of motion duration have not been investigated to our knowledge. Here, we addressed this issue by asking observers to judge the duration of motion of a target accelerating over a fixed length path in one of different directions. Observers watched either a pictorial or a quasi-blank scene, while being upright or tilted by 45° relative to the monitor and Earth's gravity. Finally, observers were upright and we tilted the scene by 45°. We found systematic anisotropies in the precision of the responses, the performance being better for downward motion than for upward motion relative to the scene both when the observer and the scene were upright and when either the observer or the scene were tilted by 45°, although tilting decreased the size of the effect. We argue that implicit knowledge about gravity force is incorporated in the neural mechanisms computing elapsed time. Furthermore, the results suggest that the effects of a virtual gravity can be represented with respect to a vertical direction concordant with the visual scene orientation and discordant with the direction of Earth's gravity
A Differential Mechatronic Device: Design, Simulation and Experimental Results
Differential mechanisms are widely studied in literature, from a theoretical viewpoint and for applicative reasons. A differential mechanism is a mechanical system with one or more output motions resulting from the combination of different input motions acting on the same degree of freedom. In this work, we point the attention on planar differential systems (a monoaxis and a Cartesian device) composed by belts and pulleys. Particularly the Vernier effect is used to realize high-speed and highaccuracy devices with low-cost components. Simplified models of these two systems are presented to show the main kinematic and dynamic features. An advanced model is then realized for the Cartesian device with the aid of the Dymola software and simulation results are compared with the expected ones from the simplified model. The control of the system is realized with three PI systems (proportionalintegrative) optimized via an adaptive logic. Finally early experimental results are presented only for the monoaxis system
Methane Reforming with H2S and Sulfur for Hydrogen Production: Thermodynamic Assessment
Nowadays, most ofthe hydrogen is obtained from fossil fuels. Atthe same time, the effort and resources dedicated to the developmentof sustainable hydrogen manufacturing processes are rapidly increasingto promote the energy transition toward renewable sources. In thisdirection, a potential source of hydrogen could be hydrogen sulfide,produced as a byproduct in several processes, and in particular inthe oil extraction and refinery operations. Methane reforming usingH(2)S has recently attracted much interest for its economicand environmental implications. Its conversion, in fact, providesa viable way for the elimination of a hazardous molecule, producinga high-added value product like hydrogen. At the same time, some ofthe still open key aspects of this process are the coke depositiondue to thermal pyrolysis of methane and the process endothermicity.In this work, the methane reforming with H2S by co-feedingsulfur is investigated through a detailed thermodynamic analysis asa way to alleviate the critical aspects highlighted for the process.A parametric analysis was conducted to assess the best thermodynamicconditions in terms of pressure, temperature, and feed composition.Changing the sulfur, H2S, and methane feed compositioncan enhance the system by improving the hydrogen production yield,reducing the carbon and sulfur deposition, increasing the H2S removal efficiency, and reducing the necessary thermal duty
Local seismic response studies in the north-western portion of the August 24th, 2016 Mw 6.0 earthquake affected area. The case of Visso village (Central Apennines).
In this work, we investigate the possible causes of the differential damaging observed in Visso village (Central Apennines, about 28 km north from the August 24th, 2016 Mw 6.0 earthquake epicenter). Following insights from the available geological cartography at 1:10.000 scale, a preliminary geophysical survey has been performed in the damaged area in order to constrain geometries and extent of the subsoil lithotypes. Then, these results have been used to retrieve a Vs profile close to the most heavily damaged buildings. This latter has been used as input for a numerical analysis aimed at deriving the motion at the ground level in the study area. In particular, a linear equivalent simulation has been performed by means of EERA code and the waveform has been obtained convolving the time history recorded during the August 24th, 2016 mainshock at Spoleto Monteluco (SPM) site. Our preliminary results indicate a possible correlation of damaging to the thickness and shape of the geological units. Nevertheless, further analyses are necessary to highlight any 2D basin and / non- linear soil behaviour effects in order to compare them to the intrinsic buildings vulnerability, according to the EMS98 guidelines
A novel process for recovery and exploitation of polyesters and polyamides from waste polymeric artifacts
Plastic waste is one of the world's biggest sources of pollution. Despite the growing trend towards recycling, there are currently no effective technologies to offset the continuous increase in plastic production. Polyesters and polyamides are among the most widely produced single-use plastics, mainly used in the manufacture of textiles and soft drink bottles. Currently, only a small proportion of these polymers can be effectively recycled. The two primary methods employed for this purpose are mechanical and chemical recycling. Presently, mechanical recycling remains the more widely adopted process within the industrial sector. However, the treatment process is limited to a narrow range of waste materials as it is impossible to remove dyes and the mechanical properties deteriorate due to incompatibility between different plastic materials. Another critical limit of this recycling technology is the limited number of recycling loops that can be done due to the thermal degradation that occurs during the extrusion process. The alternative option is chemical recycling, which allows the depolymerization of the original product to recover the monomers directly. The main drawbacks are the long reaction times and the many solvents needed to achieve high-purity products. As a results, chemical recycling is only economically feasible for large companies that can produce the virgin polymer in situ. In this work, a new technology has been patented. This process consists of three main steps. The first one is the distillation-assisted cyclodepolymerization (DA-CDP), introduced as a modification of the CDP process. In this unit, cyclic oligomers together with high molecular weight compounds are produced. Then, after polymer purification, it is possible to achieve the same molecular weight as the initial polymer in less than 30 min, exploiting the ring-opening polymerization (ROP) of the next step
Optimization of Plasmas for Recombination-Pumped Short-Wavelength Lasers
We report on experiments investigating the optimization of laser-ablated plasmas which are used to produce recombination-pumped, short-wavelength lasers. We evaluate the density of electrons and neutral atoms in laser ablated lithium and carbon plasmas as a function of time and distance away from the ablated target surface. We use an interferometric technique which can reveal information about the temperature of the plasma electrons. We find that the cold electrons which result in gain in recombination-pumped lithium lasers on the Lyman-α transition are produced by the high-intensity pump pulse rather than the lower intensity ablating pulse
Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations
In this work we propose a new combined TCAD radiation damage modelling
scheme, featuring both bulk and surface radiation damage effects, for the
analysis of silicon detectors aimed at the High Luminosity LHC. In particular,
a surface damage model has been developed by introducing the relevant
parameters (NOX, NIT) extracted from experimental measurements carried out on
p-type substrate test structures after gamma irradiations at doses in the range
10-500 Mrad(Si). An extended bulk model, by considering impact ionization and
deep-level cross-sections variation, was included as well. The model has been
validated through the comparison of the simulation findings with experimental
measurements carried out at very high fluences (2 10^16 1 MeV equivalent
n/cm^2) thus fostering the application of this TCAD approach for the design and
optimization of the new generation of silicon detectors to be used in future
HEP experiments.Comment: 8 pages, 14 figures. arXiv admin note: text overlap with
arXiv:1611.1013
Evaluation of site effects by means of 3D numerical modeling of the Palatine Hill, Roman Forum, and Coliseum archaeological area
In this study we perform 3D nonlinear analyses of seismic site response of the
Central Archaeological Area of Rome, which includes the Palatine Hill, Roman Forum, Circus
Maximus, and Coliseum. The geological bedrock of the study area is constituted by a Pliocene
marine sandy-clayey unit (MonteVaticano Formation, MVA). At top of this unit a continental Quaternary succession is superimposed. Previous studies available for this area (Pagliaroli et al. 2014a; Mancini et al. 2014; Moscatelli et al. 2014) enabled to define a detailed three-dimensional reconstruction of the subsoil conditions, characterized by complex surficial and buried morphology, lateral heterogeneities and dynamic properties of involved material, natural as well as anthropogenic.
The area of Rome is affected by earthquakes from different seismogenic districts: i) the
central Apennine mountain chain (D = 90–130km and M = 6.7–7.0); ii) the Colli Albani volcanic
district (D = 20km and M=5.5); iii) Rome area itself, which is characterized by rare, shallow,
low-magnitude events (M < 5). Both natural and artificial signals have been considered to define the input motion for the numerical modeling of the site response of the whole archeological area.
This was accomplished by means of the finite differences code FLAC3D. To evaluate the seismic hazard and, consequently, to assess possible priorities for seismic retrofitting of the monuments, contour maps of Housner intensity amplification ratio FH (defined as the ratio between Housner intensity at the top of the model and the corresponding input at the bedrock outcrop), are carried out. To cover the entire range of natural periods pertaining to the monuments in the examined area, FH was evaluated over three ranges of period: 0.1–0.5s, 0.5–1.0s, and 1.0–2.0s. Numerical results shown that: 1) within the range of periods 0.1–0.5s, high values of FH = 2.2–2.6 occur both in
correspondence of narrow valleys filled with soft alluvial deposits and at top of Palatine Hill; 2)
within the range of periods 0.5–1.0s, high values of FH occur in correspondence of the deepest valleys; 3) within the range of periods 1.0–2.0s, low values of FH occur except in correspondence of the deepest valleys.Results show a good agreement with the previous 2D numerical modeling and with the microzonation maps (Pagliaroli et al 2014a, b), even if interesting differences show up highlighting the usefulness of 3D modeling in such complex settings. Such results are significantly relevant for the monumental and archaeological heritage of this area, as it is highly vulnerable due to its old age and state of conservation
Aleppo pine knot disease: histology of the knots, detection of casual agent and mode of transmission
Novel yttrium and zirconium catalysts featuring reduced Ar-BIANH2 ligands for olefin hydroamination (Ar-BIANH2 = bis-arylaminoacenaphthylene)
The novel class of bis-arylaminoacenaphthylenes (Ar-BIANH(2)) was employed for the preparation of zirconium and yttrium complexes to be used as catalysts for cyclohydroamination of a number of primary and secondary aminoalkenes. The complex [(2,6-iPr(2)C(6)H(3)-BIAN)Zr(NMe2)(2)(eta(1)-NHMe2)] was isolated and completely characterized, including X-ray diffraction analysis. Despite its easy and almost quantitative isolation, it showed only moderate catalytic performance in the intramolecular hydroamination, irrespective of the cyclization precursor used. On the other hand, in situ generated Y-III complexes obtained using the same class of ligands were found to be very active, leading to the hydroamination of substrates including those normally reluctant in undergoing cyclization such as those featuring an internal non-activated C=C double bond. Electron donating substituents and especially steric hindrance on the ligand improve the performance of the catalysts, allowing us to decrease the catalyst loading to 1 mol% in the latter case
- …