20 research outputs found

    Patient acceptance of universal screening for hepatitis C virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the United States, about 70% of 2.9-3.7 million people with hepatitis C (HCV) are unaware of their infection. Although universal screening might be a cost-effective way to identify infections, prevent morbidity, and reduce transmission, few efforts have been made to determine patient opinions about new approaches to screening.</p> <p>Methods</p> <p>We surveyed 200 patients in August 2010 at five outpatient clinics of a major public urban medical center in Seattle, WA, with an 85.8% response rate.</p> <p>Results</p> <p>The sample was 55.3% women, median 47 years of age, and 56.3% white and 32.7% African or African-American; 9.5% and 2.5% reported testing positive for HCV and HIV, respectively. The vast majority of patients supported universal screening for HCV. When presented with three options for screening, 48% preferred universal testing without being informed that they were being tested or provided with negative results, 37% preferred testing with the chance to "opt-out" of being tested and without being provided with negative results, and 15% preferred testing based on clinician judgment. Results were similar for HIV screening.</p> <p>Conclusions</p> <p>Patients support universal screening for HCV, even if that screening involves testing without prior consent or the routine provision of negative test results. Current screening guidelines and procedures should be reconsidered in light of patient priorities.</p

    Segmentation and kinematics of the North America-Caribbean plate boundary offshore Hispaniola

    Get PDF
    We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high-resolution multibeam echo-sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate-boundary structures are a series of strike-slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre-existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike-slip regime. Along the most recent trace of the SOFZ, we measured a strike-slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS-derived motion of 9.8 ± 2 mm a−1 has remained stable during the entire Quaternary.Depto. de Geodinámica, Estratigrafía y PaleontologíaFac. de Ciencias GeológicasTRUEpu

    The tectonics and active faulting of Haiti from seismicity and tomography

    Get PDF
    International audienceOblique convergence of the Caribbean and North American plates has partitioned strain across a major transpressional fault system that bisects the island of Hispaniola. The devastating M W 7.0, 2010 earthquake that struck southern Haiti, rupturing an unknown fault, highlighted our limited understanding of regional fault segmentation and its link to plate boundary deformation. Here we assess seismic activity and fault structures across Haiti using data from 33 broadband seismic stations deployed for 16 months. We use traveltime tomography to obtain relocated hypocenters and models of V p and V p /V s crustal structure. Earthquake locations reveal two clusters of seismic activity. The first corresponds to aftershocks of the 2010 earthquake and delineates faults associated with that rupture. The second cluster shows shallow activity north of Lake Enriquillo (Dominican Republic), interpreted to have occurred on a north-dipping thrust fault. Crustal seismic velocities show a narrow low-velocity region with an increased V p /V s ratio (1.80-1.85) dipping underneath the Massif de la Selle, which coincides with a southward-dipping zone of hypocenters to a depth of 20 km beneath southern Haiti. Our observations of seismicity and crustal structure in southern Haiti suggests a transition in the Enriquillo fault system from a near vertical strike-slip fault along the Southern Peninsula to a southward-dipping oblique-slip fault along the southern border of the Cul-de-Sac-Enriquillo basin. This result, consistent with recent geodetic results but at odds with the classical seismotectonic interpretation of the Enriquillo fault system, is an important constraint in our understanding of regional seismic hazard

    Thin sheet numerical modelling of continental collision

    Get PDF
    We study the effects of incorporating surface mass transport and the gravitational potential energy of both crust and lithospheric mantle to the viscous thin sheet approach. Recent 2D (cross-section) numerical models show that surface erosion and sediment transport can play a major role in shaping the large-scale deformation of the crust. In order to study these effects in 3D (planform view), we develop a numerical model in which both the dynamics of lithospheric deformation and surface processes are fully coupled. Deformation is calculated as a thin viscous layer with a vertically-averaged rheology and subjected to plane stresses. The coupled system of equations for momentum and energy conservation is solved numerically. This model accounts for the isostatic and potential-energy effects due to crustal and lithospheric thickness variations. The results show that the variations of gravitational potential energy due to the lateral changes of the lithosphere–asthenosphere boundary can modify the mode of deformation of the lithosphere. Surface processes, incorporated to the model via a diffusive transport equation, rather than just passively reacting to changes in topography, play an active role in controlling the lateral variations of the effective viscosity and hence of the deformation of the lithosphere.This work is supported by the University College London, the Netherlands Research Centre for Integrated Solid Earth Science (ISES) and the Spanish Ministry research projects BTE2002-02462 and REN2001-3868-C03-02/MAR. The authors also benefited from NATO grant EST.CLG.978922.Peer reviewe
    corecore