7,248 research outputs found

    Imperfect rationality, macroeconomic equilibrium and price rigidities

    Get PDF
    We introduce some elements of Prospect Theory into a general equilibrium model with monoolistic competition in the good market and real wage rigidities due to (right to manage or efficient) wage bargaining, or to efficiency wages. We show that, under these types of labor market frictions, an increase in workers’ loss aversion: (i) reduces the equilibrium wage and in this way increases potential output; (ii) induces workers to work and consume less and in this way decreases potential output. If the former effect is greater (smaller) than the latter one, loss aversion increases (decreases) potential output. We also show that, under all the types of labor market frictions we consider, if loss aversion reduces equilibrium output, it also enhances the plausibility of nominal price rigidities

    Density-wave phases of dipolar fermions in a bilayer

    Full text link
    We investigate the phase diagram of dipolar fermions with aligned dipole moments in a two-dimensional (2D) bilayer. Using a version of the Singwi-Tosi-Land-Sjolander scheme recently adapted to dipolar fermions in a single layer [M. M. Parish and F. M. Marchetti, Phys. Rev. Lett. 108, 145304 (2012)], we determine the density-wave instabilities of the bilayer system within linear response theory. We find that the bilayer geometry can stabilize the collapse of the 2D dipolar Fermi gas with intralayer attraction to form a new density wave phase that has an orientation perpendicular to the density wave expected for strong intralayer repulsion. We thus obtain a quantum phase transition between stripe phases that is driven by the interplay between strong correlations and the architecture of the low dimensional system.Comment: 5 pages, 3 figure

    Superfluidity, Sound Velocity and Quasi Condensation in the 2D BCS-BEC Crossover

    Full text link
    We study finite-temperature properties of a two-dimensional superfluid made of ultracold alkali-metal atoms in the BCS-BEC crossover. We investigate the region below the critical temperature TBKTT_{BKT} of the Berezinskii-Kosterlitz-Thouless phase transition, where there is quasi-condensation, by analyzing the effects of phase and amplitude fluctuations of the order parameter. In particular, we calculate the superfluid fraction, the sound velocity and the quasi-condensate fraction as a function of the temperature and of the binding energy of fermionic pairs.Comment: 7 pages, 4 figures, improved version to be published in Phys. Rev.

    Non-BCS superconductivity for underdoped cuprates by spin-vortex attraction

    Full text link
    Within a gauge approach to the t-J model, we propose a new, non-BCS mechanism of superconductivity for underdoped cuprates. The gluing force of the superconducting mechanism is an attraction between spin vortices on two different N\'eel sublattices, centered around the empty sites described in terms of fermionic holons. The spin fluctuations are described by bosonic spinons with a gap generated by the spin vortices. Due to the no-double occupation constraint, there is a gauge attraction between holon and spinon binding them into a physical hole. Through gauge interaction the spin vortex attraction induces the formation of spin-singlet (RVB) spin pairs with a owering of the spinon gap. Lowering the temperature the approach exhibits two crossover temperatures: at the higher crossover a finite density of incoherent holon pairs are formed leading to a reduction of the hole spectral weight, at the lower crossover also a finite density of incoherent spinon RVB pairs are formed, giving rise to a gas of incoherent preformed hole pairs, and magnetic vortices appear in the plasma phase. Finally, at a even lower temperature the hole pairs become coherent, the magnetic vortices become dilute and superconductivity appears. The superconducting mechanism is not of BCS-type since it involves a gain in kinetic energy (for spinons) coming from the spin interactions.Comment: 4 pages, 3 figures, accepted by the proceedings of SNS2010 conferenc

    Phase Equilibrium of Binary Mixtures in Mixed Dimensions

    Get PDF
    We study the stability of a Bose-Fermi system loaded into an array of coupled one-dimensional (1D) "tubes", where bosons and fermions experience different dimensions: Bosons are heavy and strongly localized in the 1D tubes, whereas fermions are light and can hop between the tubes. Using the 174Yb-6Li system as a reference, we obtain the equilibrium phase diagram. We find that, for both attractive and repulsive interspecies interaction, the exact treatment of 1D bosons via the Bethe ansatz implies that the transitions between pure fermion and any phase with a finite density of bosons can only be first order and never continuous, resulting in phase separation in density space. In contrast, the order of the transition between the pure boson and the mixed phase can either be second or first order depending on whether fermions are allowed to hop between the tubes or they also are strictly confined in 1D. We discuss the implications of our findings for current experiments on 174Yb-6Li mixtures as well as Fermi-Fermi mixtures of light and heavy atoms in a mixed dimensional optical lattice system.Comment: 12 pages, 6 figure

    Dipolar fermions in a multilayer geometry

    Full text link
    We investigate the behavior of identical dipolar fermions with aligned dipole moments in two-dimensional multilayers at zero temperature. We consider density instabilities that are driven by the attractive part of the dipolar interaction and, for the case of bilayers, we elucidate the properties of the stripe phase recently predicted to exist in this interaction regime. When the number of layers is increased, we find that this "attractive" stripe phase exists for an increasingly larger range of dipole angles, and if the interlayer distance is sufficiently small, the stripe phase eventually spans the full range of angles, including the situation where the dipole moments are aligned perpendicular to the planes. In the limit of an infinite number of layers, we derive an analytic expression for the interlayer effects in the density-density response function and, using this result, we find that the stripe phase is replaced by a collapse of the dipolar system.Comment: 9 pages, 8 figure
    • …
    corecore