3,624 research outputs found

    Simultaneous multi-band detection of Low Surface Brightness galaxies with Markovian modelling

    Get PDF
    We present an algorithm for the detection of Low Surface Brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings - typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. To assess the robustness of our method, the method was applied to a set of 18 B and I band images (covering 1.3 square degrees in total) of the Virgo cluster. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (i) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (ii) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ~20% more mock LSB galaxies and ~40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is reached for sources with r_e > 3" at a mean surface brightness level of mu_g=27.7 mag/arcsec^2 and a central surface brightness of mu^0 g=26.7 mag/arcsec^2. About 10% of the false positives are artifacts, the rest being background galaxies. We have found our method to be complementary to the application of matched filters and an optimized use of SExtractor, and to have the following advantages: it is scale-free, can be applied simultaneously to several bands, and is well adapted for crowded regions on the sky.Comment: 39 pages, 18 figures, accepted for publication in A

    Integrated spectra extraction based on signal-to-noise optimization using Integral Field Spectroscopy

    Full text link
    We propose and explore the potential of a method to extract high signal-to-noise (S/N) integrated spectra related to physical and/or morphological regions on a 2-dimensional field using Integral Field Spectroscopy (IFS) observations by employing an optimization procedure based on either continuum (stellar) or line (nebular) emission features. The optimization method is applied to a set of IFS VLT-VIMOS observations of (U)LIRG galaxies, describing the advantages of the optimization by comparing the results with a fixed-aperture, single spectrum case, and by implementing some statistical tests. We demonstrate that the S/N of the IFS optimized integrated spectra is significantly enhanced when compared with the single aperture unprocessed case. We provide an iterative user-friendly and versatile IDL algorithm that allows the user to spatially integrate spectra following more standard procedures. This is made available to the community as part of the PINGSoft IFS software package.Comment: Accepted for publication in Astronomy & Astrophysics, 12 pages, 7 figure

    Scaling Relations of Spiral Galaxies

    Get PDF
    We construct a large data set of global structural parameters for 1300 field and cluster spiral galaxies and explore the joint distribution of luminosity L, optical rotation velocity V, and disk size R at I- and 2MASS K-bands. The I- and K-band velocity-luminosity (VL) relations have log-slopes of 0.29 and 0.27, respectively with sigma_ln(VL)~0.13, and show a small dependence on color and morphological type in the sense that redder, early-type disk galaxies rotate faster than bluer, later-type disk galaxies for most luminosities. The VL relation at I- and K-bands is independent of surface brightness, size and light concentration. The log-slope of the I- and K-band RL relations is a strong function of morphology and varies from 0.25 to 0.5. The average dispersion sigma_ln(RL) decreases from 0.33 at I-band to 0.29 at K, likely due to the 2MASS selection bias against lower surface brightness galaxies. Measurement uncertainties are sigma_ln(V)~0.09, sigma_ln(L)~0.14 and somewhat larger and harder to estimate for ln(R). The color dependence of the VL relation is consistent with expectations from stellar population synthesis models. The VL and RL residuals are largely uncorrelated with each other; the RV-RL residuals show only a weak positive correlation. These correlations suggest that scatter in luminosity is not a significant source of the scatter in the VL and RL relations. The observed scaling relations can be understood in the context of a model of disk galaxies embedded in dark matter halos that invokes low mean spin parameters and dark halo expansion, as we describe in our companion paper (Dutton et al. 2007). We discuss in two appendices various pitfalls of standard analytical derivations of galaxy scaling relations, including the Tully-Fisher relation with different slopes. (Abridged).Comment: Accepted for publication at ApJ. The full document, with high-resolution B&W and colour figures, is available at http://www.astro.queensu.ca/~courteau/papers/VRL2007ApJ.pdf . Our data base for 1303 spiral galaxies is also available at http://www.astro.queensu.ca/~courteau/data/VRL2007.da

    The Next Generation Virgo Cluster Survey. VII. The intrinsic shapes of low-luminosity galaxies in the core of the Virgo cluster, and a comparison with the Local Group

    Full text link
    (Abridged) We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo cluster using deep imaging obtained as part of the NGVS. We build a sample of nearly 300 red-sequence cluster members in the yet unexplored 14<Mg<8-14 < M_{g} < -8 magnitude range. The observed distribution of apparent axis ratios is then fit by families of triaxial models with normally-distributed intrinsic ellipticities and triaxialities. We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity E=0.43, and a mean triaxiality T=0.16. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. We additionally attempt a study of the intrinsic shapes of Local Group satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity E=0.51, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. We finally compare the intrinsic shapes of NGVS low-mass galaxies with samples of more massive quiescent systems, and with field, star-forming galaxies of similar luminosities. We find that the intrinsic flattening in this low-luminosity regime is almost independent of the environment in which the galaxy resides--but there is a hint that objects may be slightly rounder in denser environments. The comparable flattening distributions of low-luminosity galaxies that have experienced very different degrees of environmental effects suggests that internal processes are the main drivers of galaxy structure at low masses--with external mechanisms playing a secondary role.Comment: Accepted to ApJ. 18 pages, 12 figure

    Low-Surface-Brightness Galaxies in the Sloan Digital Sky Survey. I. Search Method and Test Sample

    Full text link
    In this paper we present results of a pilot study to use imaging data from the Sloan Digital Sky Survey (SDSS) to search for low-surface-brightness (LSB) galaxies. For our pilot study we use a test sample of 92 galaxies from the catalog of Impey et al. (1996) distributed over 93 SDSS fields of the Early Data Release (EDR). Many galaxies from the test sample are either LSB or dwarf galaxies. To deal with the SDSS data most effectively a new photometry software was created, which is described in this paper. We present the results of the selection algorithms applied to these 93 EDR fields. Two galaxies from the Impey et al. test sample are very likely artifacts, as confirmed by follow-up imaging. With our algorithms, we were able to recover 87 of the 90 remaining test sample galaxies, implying a detection rate of \sim96.5%. The three missed galaxies fall too close to very bright stars or galaxies. In addition, 42 new galaxies with parameters similar to the test sample objects were found in these EDR fields (i.e., \sim47% additional galaxies). We present the main photometric parameters of all identified galaxies and carry out first statistical comparisons. We tested the quality of our photometry by comparing the magnitudes for our test sample galaxies and other bright galaxies with values from the literature. All these tests yielded consistent results. We briefly discuss a few unusual galaxies found in our pilot study, including an LSB galaxy with a two-component disk and ten new giant LSB galaxies.Comment: 36 pages, 16 figures, accepted for publication by AJ, some figures were bitmapped to reduce the siz

    Interpreting the Evolution of the Size - Luminosity Relation for Disk Galaxies from Redshift 1 to the Present

    Full text link
    A sample of very high resolution cosmological disk galaxy simulations is used to investigate the evolution of galaxy disk sizes back to redshift 1 within the Lambda CDM cosmology. Artificial images in the rest frame B band are generated, allowing for a measurement of disk scale lengths using surface brightness profiles as observations would, and avoiding any assumption that light must follow mass as previous models have assumed. We demonstrate that these simulated disks are an excellent match to the observed magnitude - size relation for both local disks, and for disks at z=1 in the magnitude/mass range of overlap. We disentangle the evolution seen in the population as a whole from the evolution of individual disk galaxies. In agreement with observations, our simulated disks undergo roughly 1.5 magnitudes/arcsec^2 of surface brightness dimming since z=1. We find evidence that evolution in the magnitude - size plane varies by mass, such that galaxies with M* > 10^9 M_sun undergo more evolution in size than luminosity, while dwarf galaxies tend to evolve potentially more in luminosity. The disks grow in such a way as to stay on roughly the same stellar mass - size relation with time. Finally, due to an evolving stellar mass - SFR relation, a galaxy at a given stellar mass (or size) at z=1 will reside in a more massive halo and have a higher SFR, and thus a higher luminosity, than a counterpart of the same stellar mass at z=0.Comment: Version resubmitted to ApJ, after referee's comment

    The ACS Nearby Galaxy Survey Treasury VI. The Ancient Star Forming disk of NGC 404

    Full text link
    We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. Our deepest field reaches the red clump and main-sequence stars with ages <500 Myr. Although we detect trace amounts of star formation at times more recent than 10 Gyr for all fields, the proportion of red giant stars to asymptotic giants and main sequence stars suggests that the disk is dominated by an ancient (>10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that ~70% of the stellar mass in the NGC 404 disk formed by z~2 (10 Gyr ago) and at least ~90% formed prior to z~1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early and late type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in GALEX images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mass within individual regions. Finally, we use our measurements to infer the relationship between the star formation rate and the gas density of the disk at previous epochs. We find that most of the history of the NGC 404 disk is consistent with star formation that has decreased with the gas density according to the Schmidt law. However, 0.5-1 Gyr ago, the star formation rate was unusually low for the inferred gas density, consistent with the possibility that there was a gas accretion event that reignited star formation ~0.5 Gyr ago. Such an event could explain why this S0 galaxy hosts an extended gas disk.Comment: 28 pages, 20 figures, 1 table, accepted for publication in Ap

    A face for all seasons:searching for context-specific leadership traits and discovering a general preference for perceived health

    Get PDF
    Previous research indicates that followers tend to contingently match particular leader qualities to evolutionarily consistent situations requiring collective action (i.e., context-specific cognitive leadership prototypes) and information processing undergoes categorization which ranks certain qualities as first-order context-general and others as second-order context-specific. To further investigate this contingent categorization phenomenon we examined the “attractiveness halo”—a first-order facial cue which significantly biases leadership preferences. While controlling for facial attractiveness, we independently manipulated the underlying facial cues of health and intelligence and then primed participants with four distinct organizational dynamics requiring leadership (i.e., competition vs. cooperation between groups and exploratory change vs. stable exploitation). It was expected that the differing requirements of the four dynamics would contingently select for relatively healthier- or intelligent-looking leaders. We found perceived facial intelligence to be a second-order context-specific trait—for instance, in times requiring a leader to address between-group cooperation—whereas perceived health is significantly preferred across all contexts (i.e., a first-order trait). The results also indicate that facial health positively affects perceived masculinity while facial intelligence negatively affects perceived masculinity, which may partially explain leader choice in some of the environmental contexts. The limitations and a number of implications regarding leadership biases are discussed

    Stellar populations of classical and pseudo-bulges for a sample of isolated spiral galaxies

    Full text link
    In this paper we present the stellar population synthesis results for a sample of 75 bulges in isolated spiral Sb-Sc galaxies, using the spectroscopic data from the Sloan Digital Sky Survey and the STARLIGHT code. We find that both pseudo-bulges and classical bulges in our sample are predominantly composed of old stellar populations, with mean mass-weighted stellar age around 10 Gyr. While the stellar population of pseudo-bulges is, in general, younger than that of classical bulges, the difference is not significant, which indicates that it is hard to distinguish pseudo-bulges from classical bulges, at least for these isolated galaxies, only based on their stellar populations. Pseudo-bulges have star formation activities with relatively longer timescale than classical bulges, indicating that secular evolution is more important in this kind of systems. Our results also show that pseudo-bulges have a lower stellar velocity dispersion than their classical counterparts, which suggests that classical bulges are more dispersion-supported than pseudo-bulges.Comment: 10 pages, 8 figures. Accepted for publication in Astrophysics & Space Scienc
    corecore