3,428 research outputs found
GRB 110205A: Anatomy of a long gamma-ray burst
The Swift burst GRB 110205A was a very bright burst visible in the Northern
hemisphere. GRB 110205A was intrinsically long and very energetic and it
occurred in a low-density interstellar medium environment, leading to delayed
afterglow emission and a clear temporal separation of the main emitting
components: prompt emission, reverse shock, and forward shock. Our observations
show several remarkable features of GRB 110205A : the detection of prompt
optical emission strongly correlated with the BAT light curve, with no temporal
lag between the two ; the absence of correlation of the X-ray emission compared
to the optical and high energy gamma-ray ones during the prompt phase ; and a
large optical re-brightening after the end of the prompt phase, that we
interpret as a signature of the reverse shock. Beyond the pedagogical value
offered by the excellent multi-wavelength coverage of a GRB with temporally
separated radiating components, we discuss several questions raised by our
observations: the nature of the prompt optical emission and the spectral
evolution of the prompt emission at high-energies (from 0.5 keV to 150 keV) ;
the origin of an X-ray flare at the beginning of the forward shock; and the
modeling of the afterglow, including the reverse shock, in the framework of the
classical fireball model.Comment: 21 pages, 5 figure (all in colors), accepted for publication in Ap
Stellar evolution through the ages: period variations in galactic RRab stars as derived from the GEOS database and TAROT telescopes
The theory of stellar evolution can be more closely tested if we have the
opportunity to measure new quantities. Nowadays, observations of galactic RR
Lyr stars are available on a time baseline exceeding 100 years. Therefore, we
can exploit the possibility of investigating period changes, continuing the
pioneering work started by V. P. Tsesevich in 1969. We collected the available
times of maximum brightness of the galactic RR Lyr stars in the GEOS RR Lyr
database. Moreover, we also started new observational projects, including
surveys with automated telescopes, to characterise the O-C diagrams better. The
database we built has proved to be a very powerful tool for tracing the period
variations through the ages. We analyzed 123 stars showing a clear O-C pattern
(constant, parabolic or erratic) by means of different least-squares methods.
Clear evidence of period increases or decreases at constant rates has been
found, suggesting evolutionary effects. The median values are beta=+0.14
day/Myr for the 27 stars showing a period increase and beta=-0.20 day/Myr for
the 21 stars showing a period decrease. The large number of RR Lyr stars
showing a period decrease (i.e., blueward evolution) is a new and intriguing
result. There is an excess of RR Lyr stars showing large, positive
values. Moreover, the observed beta values are slightly larger than those
predicted by theoretical models.Comment: 15 pages, 9 figures; to be published in Astronomy and Astrophysics;
full resolution version available at
http://dbrr.ast.obs-mip.fr/tarot/publis/publis.htm
Forecast analysis of the incidence of tuberculosis in the province of Quebec
BACKGROUND: While the overall population prevalence of tuberculosis in Quebec has been declining for many years, tuberculosis is still disproportionately more prevalent among the immigrant and Inuit communities. As such, the aim of this study was to forecast the incidence of tuberculosis in the Province of Quebec over time in order to examine the possible impact of future preventative and treatment programs geared to reducing such disparities. METHODS: A compartmental differential equation based on a Susceptible Exposed Latent Infectious Recovered (SELIR) model was simulated using the Euler method using Visual Basic for Applications in Excel. Demographic parameters were obtained from census data for the Province of Quebec and the model was fitted to past epidemiological data to extrapolate future values over the period 2015 to 2030. RESULTS: The trend of declining tuberculosis rates will continue in the general population, falling by 42% by 2030. The incidence among immigrants will decrease but never vanish, and may increase in the future. Among the Inuit, the incidence is expected to increase, reaching a maximum and then stabilizing, although if re-infection is taken into account it may continue to increase. Tuberculosis among non-indigenous Canadian born persons will continue to decline, with the disease almost eradicated in that group in the mid 21st century. CONCLUSIONS: While the incidence of tuberculosis in the Province of Quebec is expected to decrease overall, certain populations will remain at risk
Continuous optical monitoring during the prompt emission of GRB 060111B
We present the time-resolved optical emission of GRB 060111B during its
prompt phase, measured with the TAROT robotic observatory. This is the first
time that the optical emission from a gamma-ray burst has been continuously
monitored with a temporal resolution of a few seconds during the prompt
gamma-ray phase. The temporal evolution of the prompt optical emission at the
level of several seconds is used to provide a clue to the origin of this
emission. The optical emission was found to decay steadily from our first
measure, 28s after the trigger, in contrast to the gamma-ray emission, which
exhibits strong variability at the same time. This behaviour strongly suggests
that the optical emission is due to the reverse shock
Improving the drug development process by reducing the impact of adverse events:the case of cataracts considered
Cataract was used as a model for the prevalence and economic impact of adverse events during the drug development process. Meta-analysis revealed a reported prevalence of cataract at 12.0% (1.0–43.3%), 3.8% (2.4–12.5%), 1.0% (0.0–8.1%), 1.7% (0.0–34.8%) and 3.8% (2.3–5.7%) of compounds in preclinical, Phase I, II, III and IV clinical trials, respectively. Utilising a human-based in vitro screening assay to predict cataractogenic potential in human could allow better selection of novel compounds at early-stage drug development. This could significantly reduce costs and ultimately increase the probability of a drug obtaining FDA approval for a clinical application
Coplanar stripline antenna design for optically detected magnetic resonance on semiconductor quantum dots
We report on the development and testing of a coplanar stripline antenna that
is designed for integration in a magneto-photoluminescence experiment to allow
coherent control of individual electron spins confined in single self-assembled
semiconductor quantum dots. We discuss the design criteria for such a structure
which is multi-functional in the sense that it serves not only as microwave
delivery but also as electrical top gate and shadow mask for the single quantum
dot spectroscopy. We present test measurements on hydrogenated amorphous
silicon, demonstrating electrically detected magnetic resonance using the
in-plane component of the oscillating magnetic field created by the coplanar
stripline antenna necessary due to the particular geometry of the quantum dot
spectroscopy. From reference measurements using a commercial electron spin
resonance setup in combination with finite element calculations simulating the
field distribution in the structure, we obtain an average magnetic field of
~0.2mT at the position where the quantum dots would be integrated into the
device. The corresponding pi-pulse time of ~0.3us fully meets the requirements
set by the high sensitivity optical spin read-out scheme developed for the
quantum dot
Strong electrically tunable exciton g-factors in an individual quantum dots due to hole orbital angular momentum quenching
Strong electrically tunable exciton g-factors are observed in individual
(Ga)InAs self-assembled quantum dots and the microscopic origin of the effect
is explained. Realistic eight band k.p simulations quantitatively account for
our observations, simultaneously reproducing the exciton transition energy, DC
Stark shift, diamagnetic shift and g-factor tunability for model dots with the
measured size and a comparatively low In-composition of x(In)~35% near the dot
apex. We show that the observed g-factor tunability is dominated by the hole,
the electron contributing only weakly. The electric field induced perturbation
of the hole wavefunction is shown to impact upon the g-factor via orbital
angular momentum quenching, the change of the In:Ga composition inside the
envelope function playing only a minor role. Our results provide design rules
for growing self-assembled quantum dots for electrical spin manipulation via
electrical g-factor modulation
High-density magnetomyography is superior to high-density surface electromyography for motor unit decomposition: a simulation study
Objective. Studying motor units is essential for understanding motor control, the detection of neuromuscular disorders and the control of human-machine interfaces. Individual motor unit firings are currently identified in vivo by decomposing electromyographic (EMG) signals. Due to our body’s properties and anatomy, individual motor units can only be separated to a limited extent with surface EMG. Unlike electrical signals, magnetic fields do not interact with human tissues. This physical property and the emerging technology of quantum sensors make magnetomyography (MMG) a highly promising methodology. However, the full potential of MMG to study neuromuscular physiology has not yet been explored. Approach. In this work, we perform in silico trials that combine a biophysical model of EMG and MMG with state-of-the-art algorithms for the decomposition of motor units. This allows the prediction of an upper-bound for the motor unit decomposition accuracy. Main results. It is shown that non-invasive high-density MMG data is superior over comparable high-density surface EMG data for the robust identification of the discharge patterns of individual motor units. Decomposing MMG instead of EMG increased the number of identifiable motor units by 76%. Notably, MMG exhibits a less pronounced bias to detect superficial motor units. Significance. The presented simulations provide insights into methods to study the neuromuscular system non-invasively and in vivo that would not be easily feasible by other means. Hence, this study provides guidance for the development of novel biomedical technologies
- …