We report on the development and testing of a coplanar stripline antenna that
is designed for integration in a magneto-photoluminescence experiment to allow
coherent control of individual electron spins confined in single self-assembled
semiconductor quantum dots. We discuss the design criteria for such a structure
which is multi-functional in the sense that it serves not only as microwave
delivery but also as electrical top gate and shadow mask for the single quantum
dot spectroscopy. We present test measurements on hydrogenated amorphous
silicon, demonstrating electrically detected magnetic resonance using the
in-plane component of the oscillating magnetic field created by the coplanar
stripline antenna necessary due to the particular geometry of the quantum dot
spectroscopy. From reference measurements using a commercial electron spin
resonance setup in combination with finite element calculations simulating the
field distribution in the structure, we obtain an average magnetic field of
~0.2mT at the position where the quantum dots would be integrated into the
device. The corresponding pi-pulse time of ~0.3us fully meets the requirements
set by the high sensitivity optical spin read-out scheme developed for the
quantum dot