595 research outputs found

    Pressure on the Trigger Will Now Fire the Weapon: An Examination of how the Supreme Court, Congress, and Presidents Have Left the Legal Foundation for Executive Detention Akin to the World War II Era Internment of Japanese Americans Largely Intact

    Get PDF
    Contrary to Chief Justice Robert\u27s dicta, Trump v. Hawaii (2018) did not overrule Korematsu v. United States (1944) which upheld the exclusion of Japanese Americans from the West Coast during World War II. Korematsu and its related cases are still troublingly vital. Their expansive reading of the war powers justifying executive detention has been bolstered by the Court\u27s cases addressing detainees held at Guantanamo Bay. Hamdi v. Rumsfeld (2004), which sanctioned the detention of a U.S. citizen pursuant to the Authorization for the Use of Military Force, exposed a fundamental weakness in the Non-Detention Act, the principal statutory barrier to executive detention. Today, despite the appalling history of the World War II era internment of Japanese Americans, the authority of the President to employ preventive executive detention remains both remarkably intact and remarkably broad. That authority should be restrained by appropriate amendments to the Non-Detention Act

    Investigating Violence and Control Dyadically in a Help-Seeking Sample from Mozambique

    Get PDF
    A sample of 1442 women attending a Forensic Healthcare Service provided information on their own and their partners' use of controlling behaviors, partner violence, and sexual abuse, as well as their own experiences of childhood abuse. Using Johnson's typology, the relationships were categorized as Nonviolent, Intimate Terrorism, or Situational Couple Violence. Findings suggest that help-seeking women's experiences of intimate violence may be diverse, with their roles ranging from victim to perpetrator

    Anderson Transition in Disordered Graphene

    Full text link
    We use the regularized kernel polynomial method (RKPM) to numerically study the effect disorder on a single layer of graphene. This accurate numerical method enables us to study very large lattices with millions of sites, and hence is almost free of finite size errors. Within this approach, both weak and strong disorder regimes are handled on the same footing. We study the tight-binding model with on-site disorder, on the honeycomb lattice. We find that in the weak disorder regime, the Dirac fermions remain extended and their velocities decrease as the disorder strength is increased. However, if the disorder is strong enough, there will be a {\em mobility edge} separating {\em localized states around the Fermi point}, from the remaining extended states. This is in contrast to the scaling theory of localization which predicts that all states are localized in two-dimensions (2D).Comment: 4 page

    Light and Life: Exotic Photosynthesis in Binary Star Systems

    Full text link
    The potential for hosting photosynthetic life on Earth-like planets within binary/multiple stellar systems was evaluated by modelling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in: (i) close-binary systems; (ii) wide-binary systems and (iii) three-star systems were investigated and a range of stable radiation environments found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic forms of photosynthetic life, such as infrared photosynthesisers and organisms specialised for specific spectral niches.Comment: Accepted for publication in: Astrobiolog

    Photoelectron diffraction: from phenomenological demonstration to practical tool

    Get PDF
    The potential of photoelectron diffraction—exploiting the coherent interference of directly-emitted and elastically scattered components of the photoelectron wavefield emitted from a core level of a surface atom to obtain structural information—was first appreciated in the 1970s. The first demonstrations of the effect were published towards the end of that decade, but the method has now entered the mainstream armoury of surface structure determination. This short review has two objectives: First, to outline the way that the idea emerged and the way this evolved in my own collaboration with Neville Smith and his colleagues at Bell Labs in the early years: Second, to provide some insight into the current state-of-the art in application of (scanned-energy mode) photoelectron diffraction to address two key issue in quantitative surface structure determination, namely, complexity and precision. In this regard a particularly powerful aspect of photoelectron diffraction is its elemental and chemical-state specificity

    Critical Crossover Between Yosida-Kondo Dominant Regime and Magnetic Frustration Dominant Regime in the System of a Magnetic Trimer on a Metal Surface

    Full text link
    Quantum Monte Carlo simulations were carried out for the system of a magnetic trimer on a metal surface. The magnetic trimer is arranged in two geometric configurations, viz., isosceles and equilateral triangles. The calculated spectral density and magnetic susceptibility show the existence of two phases: Yosida-Kondo dominant phase and magnetic frustration dominant phase. Furthermore, a critical transition between these two phases can be induced by changing the configuration of the magnetic trimers from isosceles to equilateral triangle.Comment: 8 pages, 4 figures; accepted for publication in J. Phys. Soc. Jp

    Photoemission Beyond the Sudden Approximation

    Full text link
    The many-body theory of photoemission in solids is reviewed with emphasis on methods based on response theory. The classification of diagrams into loss and no-loss diagrams is discussed and related to Keldysh path-ordering book-keeping. Some new results on energy losses in valence-electron photoemission from free-electron-like metal surfaces are presented. A way to group diagrams is presented in which spectral intensities acquire a Golden-Rule-like form which guarantees positiveness. This way of regrouping should be useful also in other problems involving spectral intensities, such as the problem of improving the one-electron spectral function away from the quasiparticle peak.Comment: 18 pages, 11 figure

    Electronic properties and Fermi surface of Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Silver films were deposited at room temperature onto H-passivated Si(111) surfaces. Their electronic properties have been analyzed by angle-resolved photoelectron spectroscopy. Submonolayer films were semiconducting and the onset of metallization was found at a Ag coverage of \sim0.6 monolayers. Two surface states were observed at Γˉ\bar{\Gamma}-point in the metallic films, with binding energies of 0.1 and 0.35 eV. By measurements of photoelectron angular distribution at the Fermi level in these films, a cross-sectional cut of the Fermi surface was obtained. The Fermi vector determined along different symmetry directions and the photoelectron lifetime of states at the Fermi level are quite close to those expected for Ag single crystal. In spite of this concordance, the Fermi surface reflects a sixfold symmetry rather than the threefold symmetry of Ag single crystal. This behavior was attributed to the fact that these Ag films are composed by two domains rotated 60o^o.Comment: 9 pages, 8 figures, submitted to Physical Review

    Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt

    Get PDF
    We report on a quantitative investigation of the spin-dependent quasiparticle lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by means of spin and angle-resolved photoemission spectroscopy. The experimental spectra are compared in detail to state-of-the-art many-body calculations within the dynamical mean field theory and the three-body scattering approximation, including a full calculation of the one-step photoemission process. From this comparison we conclude that although strong local many-body Coulomb interactions are of major importance for the qualitative description of correlation effects in Co, more sophisticated many-body calculations are needed in order to improve the quantitative agreement between theory and experiment, in particular concerning the linewidths. The quality of the overall agreement obtained for Co indicates that the effect of non-local correlations becomes weaker with increasing atomic number
    corecore