364 research outputs found

    Li, B and Be Contents of Harzburgites from the Dramala Complex (Pindos Ophiolite, Greece): Evidence for a MOR-type Mantle in a Supra-subduction Zone Environment

    Get PDF
    The Pindos ophiolite represents oceanic lithosphere obducted during the Jurassic. The Dramala mantle section mainly consists of highly depleted spinel harzburgite and minor plagioclase-bearing harzburgite. Textural observations and major element compositions of minerals indicate that the harzburgites experienced impregnation by a mafic, depleted melt and subsequent high-temperature (high-T) hydration and cooling (>750°C) forming pargasite and edenitic hornblende. During further cooling (from ≄ 350-400°C to < 100°C), talc + tremolite ± serpentine ± olivine, serpentine + magnetite, and finally plagioclase alteration phases formed. To test the hypothesis of a supra-subduction zone origin for the Dramala mantle, we measured Li, B and Be contents of minerals by secondary ion mass spectrometry. Whole-rock contents were measured using inductively coupled plasma-mass spectrometry and prompt gamma neutron activation analysis. We observe low Li and B contents of primary minerals (olivine, orthopyroxene, clinopyroxene) consistent with values for unmetasomatized mantle minerals; only Li contents of clinopyroxene (up to 3·7 ÎŒg/g) are slightly elevated. The bulk Li contents (0·5-1·1 ÎŒg/g) are in the upper range of values for unmetasomatized mantle, whereas B contents (<0·04-1·1 ÎŒg/g) are variable and slightly elevated compared with the unmetasomatized mantle as a result of serpentinization. Beryllium abundances in all minerals are very low (<0·005 ÎŒg/g), except for pargasite, where a maximum Be content of 0·012 ÎŒg/g was measured. The selective addition of Li to clinopyroxene can be related to the interaction with a depleted melt, and/or to partitioning of Li into clinopyroxene upon cooling. During high-T hydration and cooling, the fluid calculated to be in equilibrium with the pargasite or edenitic hornblende (based on Li, Be and B) could have been reaction-modified seawater. Low-T hydration may have led to a very minor increase in bulk B content of most samples and to the formation of serpentine with highly variable B contents (0·1-28 ÎŒg/g). Low-T hydration decreased the Li content of orthopyroxene, and Li was probably leached from some samples. The lack of correlation between degree of serpentinization and bulk B contents as well as the presence of high- and low-B serpentine can be explained by low fluid-rock ratios, decreasing T during serpentinization and lack of equilibrium as a result of fast obduction-exhumation. The low light-element contents of primary minerals and whole-rock samples clearly argue against a supra-subduction zone (SSZ) origin of the Dramala mantle section, and against the previous hypothesis of hydrous melting of the Pindos mantle above a subduction zone. We therefore conclude that the Dramala harzburgites represent a mid-ocean ridge (MOR)-type mantle, and not an SSZ-type mantle, juxtaposed with MOR-type and SSZ-type oceanic crust, either in a back-arc or in an intra-oceanic subduction zone settin

    Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance

    Get PDF
    Integration of optically active materials into whispering gallery mode (WGM) cavities enables low-threshold laser emission. In contrast to their passive counterparts, the WGMs of these microlasers can be pumped and read out easily via free-space optics. The WGMs interact with the cavity environment via their evanescent field, and thus lend themselves to label-free bio-sensing. The detection limit of such sensors, given as the ratio of the resolution of the whole measurement system to the sensitivity of the WGMs, is an important figure of merit. In this work we show that the detection limit of polymeric microdisk lasers can be improved by more than a factor of seven by optimizing their radius and thickness. We use the bulk refractive index sensitivity, the magnitude of the sensor reaction towards refractive index changes of the bulk environment, to quantify the sensing performance and show that it can be enhanced while the spectral resolution is maintained. Furthermore, we investigate the effect of the size of the cavity on the quality factor and the lasing threshold in an aqueous environment, hence allowing optimization of the cavity size for enhanced sensor performance. For all considered quantities, numerically computed expectations are verified by experimental results

    Temperature dependence of polarization relaxation in semiconductor quantum dots

    Full text link
    The decay time of the linear polarization degree of the luminescence in strongly confined semiconductor quantum dots with asymmetrical shape is calculated in the frame of second-order quasielastic interaction between quantum dot charge carriers and LO phonons. The phonon bottleneck does not prevent significantly the relaxation processes and the calculated decay times can be of the order of a few tens picoseconds at temperature T≃100T \simeq 100K, consistent with recent experiments by Paillard et al. [Phys. Rev. Lett. {\bf86}, 1634 (2001)].Comment: 4 pages, 4 figure

    Palladium-catalysed synthesis of arylnaphthoquinones as antiprotozoal and antimycobacterial agents

    Get PDF
    Malaria and tuberculosis are still among the leading causes of death in low-income countries. The 1,4-naphthoquinone (NQ) scaffold can be found in a variety of anti-infective agents. Herein, we report an optimised, high yield process for the preparation of various 2-arylnaphthoquinones by a palladium-catalysed Suzuki reaction. All synthesised compounds were evaluated for their in-vitro antiprotozoal and antimycobacterial activity. Antiprotozoal activity was assessed against Plasmodium falciparum (P.f.) NF54 and Trypanosoma brucei rhodesiense (T.b.r.) STIB900, and antimycobacterial activity against Mycobacterium smegmatis (M.s.) mc(2) 155. Substitution with pyridine and pyrimidine rings significantly increased antiplasmodial potency of our compounds. The 2-aryl-NQs exhibited trypanocidal activity in the nM range with a very favourable selectivity profile. (Pseudo)halogenated aryl-NQs were found to have a pronounced effect indicating inhibition of mycobacterial efflux pumps. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. In addition, the physicochemical parameters of the synthesised compounds were discussed

    Observation of Chirality‐Induced Roton‐Like Dispersion in a 3D Micropolar Elastic Metamaterial

    Get PDF
    A theoretical paper based on chiral micropolar effective-medium theory suggested the possibility of unusual roton-like acoustical-phonon dispersion relations in 3D elastic materials. Here, as a first novelty, the corresponding inverse problem is solved, that is, a specific 3D chiral elastic metamaterial structure is designed, the behavior of which follows this effective-medium description. The metamaterial structure is based on a simple-cubic lattice of cubes, each of which not only has three translational but also three rotational degrees of freedom. The additional rotational degrees of freedom are crucial within micropolar elasticity. The cubes and their degrees of freedom are coupled by a chiral network of slender rods. As a second novelty, this complex metamaterial is manufactured in polymer form by 3D laser printing and its behavior is characterized experimentally by phonon-band-structure measurements. The results of these measurements, microstructure finite-element calculations, and solutions of micropolar effective-medium theory are in good agreement. The roton-like dispersion behavior of the lowest phonon branch results from two aspects. First, chirality splits the transverse acoustical branches as well as the transverse optical branches. Second, chirality leads to an ultrastrong coupling and hybridization of chiral acoustical and optical phonons at finite wavevectors

    Direct observation of free-exciton thermalization in quantum-well structures

    Get PDF
    We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum states with picosecond laser pulses. The subsequent relaxation dynamics within the 1s-exciton dispersion is directly monitored by time-resolved studies of the phonon-assisted photoluminescence. It is demonstrated that the free-exciton distribution remains nonthermal for some 100 ps. The observed dynamics is in reasonable agreement with numerical results of a rate-equation model which accounts for the relevant exciton-phonon coupling mechanisms

    Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs,FA,MA)Pb(I,Br)3_{3} perovskites

    Get PDF
    Multiple-cation mixed-halide (Cs,FA,MA)Pb(I,Br)3 perovskites containing cesium, formamidinium (FA), and methylammonium (MA) possess excellent properties for a wide range of optoelectronic applications such as thin-film photovoltaics or lasers. We investigate the role of excitons and the exciton binding energy EB, relevant for the effectiveness of charge separation in solar cells, as well as the temperature-dependent bandgap energy Eg which is used as an indicator for crystal phase transitions. Generalized Elliott fits of absorption spectra offer the possibility to determine both EB and Eg. However, since excitonic effects are non-negligible even at room temperature, a careful and detailed analysis of the spectra is crucial for a correct interpretation. Therefore, an additional evaluation based on a so-called f-sum rule is applied to achieve an improved reliability of the results at higher temperatures. The obtained EB values of 20–24 meV for Cs-containing mixed perovskite compounds are below the ones of 24–32 meV and 36–41 meV for pure methylammonium lead iodide (MAPbI3) and bromide (MAPbBr3), respectively, and, thus, facilitate charge-carrier separation in photovoltaic applications. Furthermore, temperature-dependent (T = 5–300 K) studies of Eg in (Cs,FA,MA)Pb(I,Br)3 indicate a suppressed crystal phase transition by the absence of any phase-transition related signatures such as the well-known jump of about 100 meV in MAPbI3. We verify these results using temperature-dependent electroreflectance spectroscopy, which is a very reliable technique for the direct and non-destructive determination of optical resonances of the absorber layer in complete solar cells. Additionally, we confirm the suppression of the phase transition in Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 by temperature-dependent X-ray diffraction

    A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights

    Get PDF
    Strategies toward ambitious climate targets usually rely on the concept of "decoupling"; that is, they aim at promoting economic growth while reducing the use of natural resources and GHG emissions. GDP growth coinciding with absolute reductions in emissions or resource use is denoted as "absolute decoupling", as opposed to "relative decoupling", where resource use or emissions increase less so than does GDP. Based on the bibliometric mapping in part I (Wiedenhofer et al., this issue), we synthesize the evidence emerging from the selected 835 peer-reviewed articles. We evaluate empirical studies of decoupling related to final/useful energy, exergy, use of material resources, as well as CO2 and total GHG emissions. We find that relative decoupling is frequent for material use as well as GHG and CO2 emissions but not for useful exergy, a quality-based measure of energy use. Primary energy can be decoupled from GDP largely to the extent to which the conversion of primary energy to useful exergy is improved. Examples of absolute long-term decoupling are rare, but recently some industrialized countries have decoupled GDP from both production- and, weaklier, consumption-based CO2 emissions. We analyze policies or strategies in the decoupling literature by classifying them into three groups: (1) Green growth, if sufficient reductions of resource use or emissions were deemed possible without altering the growth trajectory. (2) Degrowth, if reductions of resource use or emissions were given priority over GDP growth. (3) Others, e.g. if the role of energy for GDP growth was analyzed without reference to climate change mitigation. We conclude that large rapid absolute reductions of resource use and GHG emissions cannot be achieved through observed decoupling rates, hence decoupling needs to be complemented by sufficiency-oriented strategies and strict enforcement of absolute reduction targets. More research is needed on interdependencies between wellbeing, resources and emissions
    • 

    corecore