ACCEPTED MANUSCRIPT • OPEN ACCESS

A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights

To cite this article before publication: Helmut Haberl et al 2020 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/ab842a

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2020 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

1		
2		
5 4	1	A systematic review of the evidence on decoupling of GDP, resource use
5	2	and GHG emissions, part II: synthesizing the insights
6	3	
/ 0	4	Article for the special issue on "Climate change mitigation & demand-side measures" in
0 9	5	Environmental Research Letters, edited by Felix Creutzig et al.
10	6	
11	7	Helmut Haberl ¹ *, Dominik Wiedenhofer ^{1,**} , Doris Virág ^{1,**} , Gerald Kalt ¹ , Barbara Plank ¹ ,
12	8	Paul Brockway ² , Tomer Fishman ³ , Daniel Hausknost ³ , Fridolin Krausmann ¹ , Bartholomäus
13	9	Leon-Gruchalski ⁴ , Andreas Mayer ¹ , Melanie Pichler ¹ , Anke Schaffartzik ^{1,7} , Tânia Sousa ⁶ , Jan
14	10	Streeck ¹ , Felix Creutzig ⁸
15	11	
17	12	¹ Institute of Social Ecology, University of Natural Resources and Life Sciences, Vienna,
18	13	Austria
19	14	² School of Earth and Environment, University of Leeds, UK
20	15	School of Sustainability, Interdisciplinary Center Herzliya, Israel
21	16	Institute of Safety and Risk Sciences, University of Natural Resources and Life Sciences,
22	17	Vienna, Austria
24	18	³ Institute for Social Change and Sustainability, Vienna University of Economics and
25	19	Business, Austria
26	20	⁷ Instituto Superior Tecnico, MARETEC, Universidade de Lisboa, Portugal
27	21	Institut de Ciencia i Techologia Ambientais, Universitat Autonoma de Barcelona (ICTA-
28 29	22	⁸ Margator Institute for the Global Commons (MCC) Parlin Cormany
30	25	Mercator institute for the Global Commons (MCC), Bernin, Germany
31	24 25	* Corresponding author: helmut haberl@boku ac at: Institute of Social Ecology University of
32	25	Natural Resources and Life Sciences, Vienna, Schottenfeldgasse 29, 1070 Vienna, Austria
33	20	** These authors contributed equally to this article
34 35	28	These autions contributed equally to this article.
36	20	
37	30	Social media abstract: This systematic literature review critically examines the evidence on
38	31	past (de)coupling of economic activity (GDP), resource use and GHG emissions and highlights
39	32	political strategies for promoting decoupling discussed in the literature.
40	33	
41 42	34	Keywords: Decoupling; Economic growth; Degrowth; Green growth; Material flow; Energy
43	35	flow; Energy use; Primary energy; Final energy; Useful energy; Exergy; GHG emissions; CO ₂
44	36	emissions
45	37	
46		
47 48		
49		
50		
51		
52		
55 54		
55		
56		
57		
58		
60 60	7	

Abstract

Strategies toward ambitious climate targets usually rely on the concept of "decoupling"; that is, they aim at promoting economic growth while reducing the use of natural resources and GHG emissions. GDP growth coinciding with absolute reductions in emissions or resource use is denoted as "absolute decoupling", as opposed to "relative decoupling", where resource use or emissions increase less so than does GDP. Based on the bibliometric mapping in part I (Wiedenhofer et al., this issue), we synthesize the evidence emerging from the selected 835 peer-reviewed articles. We evaluate empirical studies of decoupling related to final/useful energy, exergy, use of material resources, as well as CO₂ and total GHG emissions. We find that relative decoupling is frequent for material use as well as GHG and CO₂ emissions but not for useful exergy, a quality-based measure of energy use. Primary energy can be decoupled from GDP largely to the extent to which the conversion of primary energy to useful exergy is improved. Examples of absolute long-term decoupling are rare, but recently some industrialized countries have decoupled GDP from both production- and, weaklier, consumption-based CO₂ emissions. We analyze policies or strategies in the decoupling literature by classifying them into three groups: (1) Green growth, if sufficient reductions of resource use or emissions were deemed possible without altering the growth trajectory. (2) Degrowth, if reductions of resource use or emissions were given priority over GDP growth. (3) Others, e.g. if the role of energy for GDP growth was analyzed without reference to climate change mitigation. We conclude that large rapid absolute reductions of resource use and GHG emissions cannot be achieved through observed decoupling rates, hence decoupling needs to be complemented by sufficiency-oriented strategies and strict enforcement of absolute reduction targets. More research is needed on interdependencies between wellbeing, resources and emissions.

1. Introduction

Many policy documents and scientific publications, including those of the IPCC, assume that economic growth will continue to be a cornerstone of thriving future societies. However, if economic growth is accompanied by increases of resource use and emissions (Hickel and Kallis, 2019; Steinberger et al., 2013), it may threaten chances of meeting future sustainability transformation goals. Achieving targets such as the SDGs (TWI2050, 2018) or the Paris climate accord to limit global heating to 1.5-2.0°C (IPCC, 2018) requires reducing emissions of greenhouse gases (GHG) to zero around 2050, and most likely also absolute reductions of the use of natural resources such as energy or materials in many world regions. In many scenarios, net negative emissions, achieved either through reforestation and other land-based "natural climate solutions" (Griscom et al., 2017) or negative emission technologies (Fuss et al., 2018; Minx et al., 2018; Nemet et al., 2018; Rogelj et al., 2019), are required after 2050 to bring the climate back from an overshoot over the climate-change mitigation targets to the specified target level. The need for "negative emissions" emerges in all scenarios that fail to achieve sufficient cuts in emissions in the first half of the century (IPCC, 2018).

If achieving ambitious climate and sustainability targets should be reconciled with continued GDP growth, an absolute decoupling (or "de-linking"; (Vehmas et al., 2003)) of GDP from the use of biophysical resources and/or emissions is a logical necessity (Hickel and Kallis, 2019; Jackson and Victor, 2019; Parrique et al., 2019; UNEP, 2011a; UNEP-IRP, 2019). In this set of two articles, we present a systematic review of the empirical literature on past (de)coupling of resource use and emissions and GDP. Part I has provided a bibliometric mapping of this literature and focuses on how decoupling is empirically analyzed in various strands of research (Wiedenhofer et al., this issue). Here in part II, we synthesize the evidence in this literature with respect to observed historical (de)coupling and discuss its implications for science and policy.

We analyze the scientific literature on the relationships between economic output (most commonly measured as inflation-corrected GDP) and resource use or emissions and the observed rates of relative and absolute decoupling. We aim at elucidating the potential contribution of past and ongoing gains in economy-wide efficiency and productivity towards absolute decoupling and zero carbon futures. The socio-ecological systems perspective of socio-economic metabolism (Fischer-Kowalski, 1998; Haberl et al., 2019; Pauliuk and Hertwich, 2015; Pauliuk and Müller, 2014) stresses that socio-economic systems continuously require materials and energy for all economic activity and the reproduction of humans, livestock, and all manufactured capital, which necessarily leads to emissions and waste. From this perspective, materials, energy, waste and emissions are inextricably interlinked and therefore need to be treated jointly, an idea sometimes denoted as "resource nexus" (Bleischwitz et al., 2018b). The broad scope of this systematic review was motivated by the aim to capture such systemic linkages, as they are increasingly acknowledged as important for both science and policy (Haberl et al., 2019). The scale and patterns of socio-economic metabolism are also directly entangled with past and future development pathways, as well as with socioeconomic structures and policies. To capture such linkages, and to address the question to what extent the resource/GDP relations might be amenable to active intervention, the review also aims to map the key strategies discussed by the literature to achieve decoupling (Section 4).

It is important to distinguish resource decoupling (e.g. decoupling of GDP from energy or material use) from impact decoupling (e.g. the decoupling of GDP from GHG emissions) (Jackson and Victor, 2019; UNEP, 2011a). While reduction of resource use will - ceteris paribus - always reduce impacts because fewer resources need to be extracted, processed or disposed of, some (probably not all) impacts can also be reduced and redirected through technological measures (e.g. flue gas treatment or substitution of low-carbon fuels for high-C fuels such as coal or oil products), even if resource use is not reduced. For GHG emissions, such options are intensively researched and may gain importance in the future (based on carbon capture and sequestration or CCS technologies; (Fuss et al., 2014)). However, they are currently not deployed and hence are not included in this review, which only covers studies of observed past decoupling, and excludes all model-based studies on future scenarios. This focus is supported by IPCC reports demonstrating that energy efficiency and demand-side measures have less risks and are more benevolent to societies than technological fixes (Creutzig et al., 2018, 2016; IPCC, 2014).

A key issue for decoupling and decarbonization, which plays a big role in this review, is global trade and its role in connecting producers and consumers. There are three complimentary perspectives (Steininger et al., 2015). (1) The production-based (territory-based) perspective accounts for resources used in or emissions emerging from a territory. It underlies emission accounts of the UNFCCC. (2) The consumption-based perspective accounts for resources used or emissions emerging – no matter where in the world – along supply chains and required to meet the final demand of a national economy. Such a perspective is required to account for displacements and problem shifting through international trade, e.g. 'improvements' of energy intensity (energy/GDP) resulting from increasing imports of embodied energy in imported goods that help reducing the need to produce these goods domestically (Moreau et al., 2019; Moreau and Vuille, 2018). (3) The income-based perspective accounts for resources used in or emissions emerging in the generation of income for a given country (Marques et al., 2012; Rodrigues et al., 2006). However, the difference between consumption-, production- and income based accounts cannot simply be interpreted as "leakage" or "outsourcing" (Jakob and Marschinski, 2013), as the attribution of responsibility along supply chains is complex (Rodrigues et al., 2006; Rodrigues and Domingos, 2008; Schaffartzik et al., 2015; Steininger et al., 2016). Recognition of this challenge has resulted in proposals of various methods to derive displacement indicators (Jiborn et al., 2018; Kander et al., 2015). Data allowing the allocation of resource use or emissions directly or indirectly occurring along international supply chains to final consumers are recently becoming available through the development of multi-regional input-output models (Domingos et al., 2016; Liang et al., 2017; Peters, 2008; Rodrigues et al., 2010; Steininger et al., 2015, 2016; Wiedmann et al., 2015). The production-, consumption-and income-based perspectives on resource use and emissions can result in widely diverging, if not opposing, results when analyzing the relations between resources/emissions and GDP hence both production- and consumption-based will be considered for a better assessment (see Section 5; Figure 2). We do not include the income-based perspective because studies with empirical results at the national or global level are rare (Liang et al., 2017; Marques et al., 2013, 2012;

In this evidence synthesis, we consider production- and consumption-based perspectives but restrict ourselves to national- and international studies, acknowledging that substantial amounts of work have been published on sub-national and city-level decoupling, as well as sectoral- or raw material/energy carrier specific perspectives. Including these literatures would not have been consistent with the comprehensive focus of this review. Moreover, studies with a narrow geographical or thematic scope cannot provide the top-down perspective necessary to identify problem-shifting and rebound effects in the global system in which we are particularly interested. Specifically, we address the following research questions:

Rodrigues et al., 2010; Steininger et al., 2016)

- What is the empirical evidence for relative or absolute decoupling of economic output from resource use and emissions at the national-to-global level?
- Which strategies and policy recommendations are discussed by the literature empirically investigating efficiency and decoupling trends? Do they point towards a "degrowth" or "green growth" perspective?
 - What can be learned from past decoupling trends for achieving future absolute • reductions in resource use and GHG emissions?

2. Methods

In this article, we conduct an evidence synthesis for a body of the 835 peer-reviewed journal articles and book chapters identified in part I (Wiedenhofer et al., this issue). There, we describe a search query to SCOPUS as well as ISI Web of Knowledge and an expert solicitation, yielding 11,609 references covering the time span between the first captured study from January 1972 until June 7, 2019. 8,455 articles remained after duplicate removal, which we screened first at the level of titles and abstracts and second at the full-text level, eliminating all non-relevant articles and yielding the final 835 papers for in-depth review. Part I describes these procedures in detail, including criteria for exclusion as well as those applied at the coding stage. It also presents a bibliometric mapping of this body of literature and comparatively discusses the development of the identified research streams and their approaches to investigating decoupling phenomena.

For part II (this paper), we proceeded as follows. Because the body of literature on primary energy, territorial CO₂ and on the causality relations between energy use and GDP is very large and recent reviews exist, we relied on these reviews and handpicked references to summarize their implications for the overall topic of this article (section 3.1). We then present an in-depth analysis of the following streams of literature: (1) Studies on useful energy and exergy, and a part of the literature on final energy (section 3.2). (2) Studies on aggregate material and energy flows following a social metabolism approach (section 3.3). (3) Studies on total GHG emissions as well as studies on carbon emissions from fossil fuel combustion and industrial processes, excluding studies only dealing with territorial CO₂ emissions (section 3.4).

In section 4, we focus on discussing the strategies adopted (explicitly or implicitly) in the empirical decoupling literature. Due to the scope of this systematic review, conceptually and theoretically oriented papers explicitly focusing on policy choices were mostly excluded by the search query. Therefore, our analysis is restricted to policy recommendations and strategies found in papers that have a focus on biophysical evidence rather than politics. For the qualitative mapping and synthesis of strategies and policy recommendations, we drew a random subsample of 15% from the 835 articles, yielding 125 articles for further qualitative content synthesis. We used widely accepted definitions of green growth and degrowth to interpretatively map the 125 papers according to these definitions:

- For green growth, we refer to three major international institutions (OECD, UNEP and the World Bank) that promote green growth (OECD, 2011; UNEP, 2011b; World Bank, 2012). Their definitions range from relative decoupling (World Bank, 2012) to absolute decoupling (OECD, 2011; UNEP, 2011b, p. 2011; World Bank, 2012). Articles were classified as "green growth" if their framing aimed at absolute or relative decoupling without impeding economic growth.
- Articles were classified as "degrowth" if their framing explicitly challenged the primacy • of economic growth over the (absolute) reduction of resource use and emissions, or articles that were agnostic towards economic growth (van den Bergh and Kallis, 2012a). We included articles in this category, based on their empirical findings, if they at least challenged economic growth as a 'taken for granted' variable. That is, we included articles that either proposed an "equitable downscaling of economic production and consumption" (degrowth; quote on p.910) or adopted an "indifferent" (p.912) position towards the effects of certain policy measures on economic growth (a-growth) (van den Bergh and Kallis, 2012).
 - Papers not meeting the above criteria were classified as "others". This category mostly includes papers which were primarily concerned with the causality between GDP and energy use or GHG emissions without expressing any aim of reducing emissions or resource use.

We openly coded the subsample (based on abstract, introduction, conclusion, and, if applicable, policy recommendations) according to the strategies and policies they recommended. In a next step, we merged these open codes to derive manageable and meaningful findings. For example, we merged the recommendations "internalization of external environmental goods", "regulate prices" and "environmental taxes" into the category "pricing".

3. Synthesis of key insights and quantitative evidence on decoupling

In this section, we comparatively review the literature on the relation between economic growth
 and various resource-use and emission indicators, covering both production- and consumption based studies. We critically examine the state and trajectory of these research streams and
 summarize their key insights and quantitative results on relative and absolute decoupling.

We start by summarizing the evidence on the coupling between GDP and primary energy respectively territorial CO₂ emissions, which are closely related because burning fossil fuels (which account for a large fraction of primary energy in most countries) is the dominant source of CO₂ emissions (section 3.1). In contrast to sections 3.2-3.4, this section does not undertake an analysis of all articles within this category; we instead rely on recent major reviews and selected studies. We then summarize the findings on the extent of decoupling between GDP and final energy as well as exergy (section 3.2), i.e. indicators that are much more closely linked to the actual functions, utility and services of energy for socio-economic activities (Haas et al., 2008; Kalt et al., 2019; Lovins, 1979). Section 3.3 presents the evidence on the (de)coupling

between GDP and comprehensive measures of social metabolism derived with the harmonized and internationally applied economy-wide material and energy flow analysis (MEFA) framework (Fischer-Kowalski et al., 2011; Haberl et al., 2004; Krausmann et al., 2017a). This comprehensive perspective covers combustible energy carriers such as fossil fuels, as well as non-metallic minerals, ores and metals and biomass, which are all required for socio-economic activities and are highly interlinked (Bleischwitz et al., 2018b; Krausmann et al., 2017a; Schandl et al., 2017). Section 3.4 summarizes the evidence on the coupling between GDP and emissions based on full GHG accounts (including agriculture, forestry, and other land use (AFOLU) and non-carbon greenhouse gases, consumption-based CO₂ emissions as well as territorial and consumption-based full GHG accounts).

3.1 Primary energy and territorial CO₂ emissions

Although neo-classical economic growth models (see Aghion and Howitt, 2009) do not include energy as a production factor, the relationship of energy use and economic growth has gained significant attention in recent research. Recognizing that standard regression methods are insufficient with regard to avoiding spurious correlation¹, cointegration and Granger causality tests have been the predominant approaches for time-series statistical analysis from the 1970s onwards (Stern, 2011). Cointegration testing identifies long-term equilibria between two or more non-stationary variables (Enders, 2014). Granger causality tests analyze the direction of causality, i.e. whether one time series is useful in forecasting another (Granger, 1969).

Using these well-established methods, this large body of literature finds that long-run primary energy-GDP cointegration exists across a wide range of temporal and geographic scales. However, the direction of the energy-GDP Granger causality is inconclusive, as directionalities differed according to the considered regions, timeframes and methods used (Kalimeris et al., 2014; Omri, 2014; Ozturk, 2010; Stern, 2011; Tiba and Omri, 2017). Besides the lack of directionality, energy-GDP Granger causality testing itself is somewhat controversial. For example, Bruns et al. (2013) suggest there is a prevalence of model misspecification and publication bias². Other scholars criticize the 'speculative and exploratory' nature of the Granger causality debate (Beaudreau, 2010) and that the same methodological approaches continue to be applied although they have proven to be inadequate for resolving the question of directionality (Kalimeris et al., 2014; Karanfil, 2009; Ozturk, 2010; Tiba and Omri, 2017).

Stern (2011, 1997) argues that regardless of whether econometric approaches find empirical evidence for causality in one or another direction, energy is always an essential factor of production. This viewpoint is corroborated by several studies reviewed in section 3.2 and has long been voiced by "biophysical economists" (Cleveland, 1987; Hall et al., 1986; Kümmel, 2011). Based on a synthesis of energy-based and mainstream models of economic growth, Stern (2011) finds that energy scarcity imposes a strong constraint on economic growth. He also identifies factors that could affect the linkages between energy use and economic output, and are therefore key to gauging the extent of a possible decoupling of GDP from energy use: substitution between energy and other inputs such as capital and labor, technological change, and shifts in the composition of energy inputs and in the economic structure.

Around 80% of global GHG emissions originate from combustion of fossil fuels. Given the historical coupling between primary energy and GDP, we might expect a similar coupling relationship between territorial CO₂ emissions and GDP at the global level (Bassetti et al., 2013;

because of the shared directionality, but there is no true underlying relationship (Stern, 2011).

² The "tendency of authors and journals to preferentially publish statistically significant or theory-conforming results" (Bruns et al., 2013).

¹ Spurious correlation is where variables trending over time appear to be correlated with each other simply

Stern, 2017). The empirical evidence supports that assertion: global GDP (constant \$US2010) grew at 3.5%/year from 1960-2014, while CO₂ emissions grew at 2.5%/year on average (World Bank, 2019a); i.e., globally there is relative but no absolute decoupling. Between 2000 and 2014, the relationship was even tighter, as both CO₂ emissions and GDP (constant \$U\$2010) grew at $\sim 2.8\%$ /year on average.

At the international level, studies examining the relationships between territorial CO₂ emissions and GDP typically also find weak or relative decoupling (Longhofer and Jorgenson, 2017; Sarkodie and Strezov, 2019; Stern et al., 2017; Vollebergh et al., 2009). A few studies find absolute decoupling (Azam and Khan, 2016; Chen et al., 2018; Madaleno and Moutinho, 2018; Roinioti and Koroneos, 2017), but these are usually relatively small, short-term reductions of CO₂ emissions (Li et al., 2007). A few country-level GDP-CO₂ studies find empirical support for an Environmental Kuznets Curve (EKC) type relationship, whereby CO₂/capita rises and then falls with rising GDP/capita, i.e. income (Stern, 2017). National-level studies (Azam and Khan, 2016; Hardt et al., 2018; Kander et al., 2015; Moreau et al., 2019; Moreau and Vuille, 2018; Peters and Hertwich, 2008; Wood et al., 2019a) emphasize the role of 'offshoring' emissions (e.g. related to imported goods) and changes in economic structure (e.g. shrinking carbon-intensive industry, larger contributions from service sectors) in distorting the GDP-CO₂ relationship in one or the other direction. Variability in primary energy composition and different stages in renewable energy deployment are also seen as key reasons for differing results regarding the existence of an EKC for CO₂ (Chien and Hu, 2007; Fang, 2011; Menegaki, 2011; Salim and Rafiq, 2012; Tiwari, 2011; Tugcu et al., 2012; Yao et al., 2019).

3.2 Final and useful energy, as well as exergy

Socioeconomic energy flow analyses trace the flow from primary energy extracted from the environment (e.g. crude oil or solar radiation) to final energy put to use in production or consumption (e.g. gasoline or electricity) to useful energy actually performing a specific function (e.g. mechanical work or heat). While data on primary and final energy are readily available from statistical sources in reasonably standardized manner (IFIAS, 1974, IPCC, 2014), data on useful energy (i.e. the energy actually performing useful work) must be inferred and are only exceptionally reported. Exergy evaluates the thermodynamic quality of these energy flows by quantifying the maximum amount of work (mechanical energy) that a given amount of energy can provide. For example, as electricity can be completely converted into work (i.e., it is equivalent to mechanical work), 1 kWh of electricity has an exergy of 1 kWh. By contrast, the exergy of 1 kWh of heat at 80°C in an environment at 20°C is only 0.17 kWh. Data on exergy are not reported by statistical bodies, therefore the community interested in the relation between exergy and economic activity needs to calculate exergy equivalents of primary, final or useful energy flows (Ayres et al., 2003).

Research on the relationship between final energy and economic growth is often motivated by questions on energy efficiency. Energy efficiency is usually defined as GDP per unit energy used (see Borozan, 2018; Cunha et al., 2018; Hu and Kao, 2007; Jakob et al., 2012; Marcotullio and Schultz, 2007; Moreau et al., 2019) or its inverse, energy intensity (see Ang and Liu 2006, Liddle 2012, Mulder and de Groot 2012, Duro et al 2010). Some studies find strong linkages between final energy use and GDP (e.g. Stjepanović 2018, Kim 1984), while others find evidence for some degree of decoupling, mostly at the national scale (e.g. Naqvi and Zwickl 2017, Jakob et al 2012, Liddle 2012, Mulder and de Groot 2012). Several studies argue that the observed decoupling can be attributed to structural changes in the economy and outsourcing of energy-intensive activities (e.g. Moreau et al 2019). A recent scenario suggests that low primary energy demand is compatible with staying well below 2°C and providing services that enable wellbeing for all (Grubler et al., 2018).

Regarding the wealth of studies investigating the energy-GDP relationship applying cointegra-tion and causality tests based on primary energy consumption (see section 3.1), it is somewhat surprising that there are hardly any studies applying such methods to final energy or exergy and GDP. Among the few exceptions are Antonakakis et al (2017) and Belke et al (2011). Both find evidence for bi-directional causality, i.e. for final energy consumption being a driver for GDP as well as vice versa.

The number of studies analyzing exergy flows is comparatively small (see Tab. 1b). Most studies investigating exergy flows find relative decoupling of GDP from primary and final exergy (e.g., Ayres et al., 2003; Warr et al., 2010, Serrenho et al., 2014, Guevara et al., 2016; Jadhao et al., 2017). In contrast, no significant improvements in intensities or long-term decoupling were found for useful exergy. Some studies even found increasing useful exergy intensities, in particular during periods in which the contribution of industry to GDP respectively industry's share in final energy use rise (e.g., Warr et al., 2008, Warr et al., 2010, Guevara et al., 2016); others did not detect a clear trend (e.g., Serrenho et al., 2014, Serrenho et al., 2016). Exergy studies found considerable gains in the conversion efficiency from primary to useful exergy (exergy efficiency), but also a slowdown of efficiency gains since the 1970s (Ayres et al., 2003; Warr et al., 2010).

Several macro-economic models use (useful) exergy in addition to capital and labor as factors of production (Warr et al., 2008; Warr and Avres, 2012; Sakai et al., 2019; Santos et al., 2018); these models can generally explain past GDP growth very well, without resorting to residual factors such as autonomous technological growth (Ayres and Warr, 2009; Warr and Ayres, 2012). This would explain the strong long-term coupling between useful exergy and GDP. Seen from that perspective, the decoupling of primary or final energy/exergy and GDP can be interpreted as an "economic growth engine" under conditions of scarce resources (Sakai et al., 2019; Ayres and Warr, 2009). Raising the conversion efficiency of primary to final exergy or final to useful exergy then results in relative decoupling for the former properties while the ratio of useful exergy to growth does not improve substantially - in other words, increases in conversion efficiency drive GDP growth rather than reducing energy use (Sakai et al., 2019; Ayres and Warr, 2009).

Table 1. Analysis of the studies on final energy, useful energy and exergy. All studies with one exception reported in the last column refer to production-based (territorial) accounting principles; very few report on the difference between the growth rate of GDP and resource use, so these columns were omitted. Where available, quantitative information on decoupling was integrated in the text in the last column. Acronyms: APEC... Asia-Pacific Economic Cooperation; DEA...Data Envelopment Analysis; EU...European Union; IEA...International Energy Agency; EU-KLEMS...Capital (K), labour (L), energy (E), materials (M) and service (S) inputs database of the EU; GHG...Greenhouse Gas; ICT...Information and Communication Technology; LINEX...Linear-exponential production function; NUTS... Nomenclature des unités territoriales statistiques; OLS...Ordinary Least Square analysis; STAN...STructural ANalysis Database of the OECD; TPES...Total Primary Energy Supply; TFEC...Total Final Energy Consumption; UK...United Kingdom; USA...United States of America

Reference	Country	Period	Indica-	Method(s)	Conclusions regarding decoupling
	/ region		tor(s)		
(a) Final en	ergy		*		
Kim, 1984	Asia-	1960-	Commer-	Pooled cross-	Finds strong association between GDP and energy
	Pacific	1980	cial ener-	country analysis	consumption from 1960-1980; energy/GDP elasticities
			gy		are: China 1.07, Japan 1.01, Korea 0.96
Ang and	100	1997	Final	Cross-sectional	Final energy/GDP is smaller in countries with higher
Liu, 2006	coun-		energy &	analysis	per-capita income. The relation between aggregate CO ₂
	tries		CO_2		intensity and GDP approximates the EKC model, i.e. is
			intensity		highest at intermediate per-capita incomes.
Hu and	17	1991-	Final	Data Envelop-	DEA compares efficiencies among countries and
Kao, 2007	APEC	2000	energy	ment Analysis	thereby suggest energy-saving potentials; results
			from IEA	(DEA)	

Marcotul- lio and	12	1960-	TPES &	Cross-country	Energy supply and consumption patterns are more
lio and			11 20 00	cross country	Energy suppry and consumption patterns are more
0 1 1	coun-	2000	TFEC	comparison, trend	efficient in Asia-Pacific countries than in the USA
Schulz, 2008	tries			analysis, OLS regressions	
Duro et	OECD	1980-	Final	Regression and	Finds that differences in GDP/cap are significant
al., 2010		2006	energy	decomposition	explaining inequality in energy use per capita;
			intensity	analysis, econo-	reduction of energy intensity differences helped
				metric panel	reducing the inequality in energy per capita.
				analysis	
Belke et	25 OF CD	1981-	Final	Econometric	Finds bi-directional causality between energy
al., 2011	OECD	2007	energy	causality tests	consumption and GDP growth in the long run, i.e.
	tries				and vice versa: supports the feedback hypothesis
Liddle	28	1960-	Final	Cross-sectional	OECD final energy intensity typically declines: fi
2012	OECD	2006	energy	analysis and	trends towards convergence in final energy intens
	coun-		intensity	descriptive trend	among countries. Convergence is contingent on
	tries		-	analysis	country-specific factors since differences in indivi
					energy-GDP ratios persist.
Mulder	18	1970-	Final	Decomposition	The average annual growth rate of final energy
and de	OECD	2005	energy	analysis and	intensity was -2.6%/y (EU-KLEMS data) and -1.5
Groot,	coun-		intensity	descriptive trend	(IEA and STAN data) between 1995-2005.
2012 VI-1	tries	2000	Ein 1	analysis	
v laninic-	20 EU	2000-	Final	window analysis /	Substitution among production factors and change
vic and	tries	2010	(Eurostat)	DEA	medium run Inefficient countries could improve b
Segota.	1105		(Eurosuit)		reducing some of the inputs.
2012					i sectore of the inputs.
Uwasu et	100	1970-	Final	Econometric	The paper finds that income growth induces increased
al., 2014	coun-	2010	energy	panel data	final energy consumption and that geophysical fac
	tries			analysis	(e.g., climate) influence the relation. In countries
					cold climates with high energy consumption furth
	107	1071	D ' 1		increase in income do not result in growing energ
Antona-	106	1971-	Final	Panel vector auto-	Causality between total economic growth and ene
$a_1 2017$	coun-	2011	energy	regression; impul-	consumption is bidirectional; no evidence for
al., 2017	ules		use, Ono 🗸	function analyses	renewable energy consumption promoting growth
Naqvi and	18 EU	1995-	Final	Decoupling	This paper uses a consumption-based approach. It
Zwickl,	coun-	2008	energy	indices as defined	found that in almost all sectors the median EU con
2017	tries		use, air	by OECD; WIOD	had at least some (relative) decoupling.
D	DI	2005	pollutants	database	D 11'00 1111 00
Borozan,	EU	2005-	Final	Data envelopment	Regional differences in technical and energy effic
2018	(NILITS	2015	(Eurostat)	regression	declines of total factor energy efficiency in recess
	(1013)		(Eurostat)	analysis	vears
Cunha et	Portu-	1990-	Final	Index	Overall energy efficiency (GDP/final energy) tren
al., 2018	gal, UK.	2012	energy	decomposition	display different patterns between countries and s
	Brazil,			analysis	within countries; major drivers for energy efficient
	China			-	improvements are the intensity and the affluence of
Stjepano-	30 euro-	1994-	Final	Panel data	Strong correlation between final energy consumpt
vić, 2018	pean	2016	energy	analysis	and GDP growth in all monitored countries; but n
	coun-		(Eurostat)		short-term link between these variable in develope
Morecu et	THES	1000	Final	Index	Countries.
al 2010	EU-28	2014	energy use	decomposition	to structural changes: an equally significant part is
un, 2017	K	2017	use and a second	analysis	to energy efficiency improvements: observed
					decoupling is largely due to outsourcing of energy
					intensive activities.
(b) Exergy					
Ayres et	USA	1900-	Primary	Descriptive trend	Finds relative decoupling of primary exergy from
al., 2003		1998	and useful	analysis	primary work per unit GDP peaks ~1970 and then
			exergy		declines. Resource input is seen as a driver of GD
					Finds a positive feedback between useful work an
Warr at	UK	1000	Useful	Growth model	The LINEX function with useful every conital a
al 2008	UK	2000-	everov	Using I INFY and	labor as inputs is able to describe the CDD trainet

				cobb-Douglas production functions; econometric time- series analysis.	well. The marginal productivity of useful exergy has decreased in the UK since 1900; the ratio of useful exergy to GDP decreased since 1960. (This study assumes a 100% final-to-useful conversion efficiency of electricity).
Warr and Ayres, 2010	USA	1946- 2000	Useful exergy	Econometric causality tests	Variations in useful work have no short-run effect on GDP but exert a long-run influence causing GDP to adjust to a new equilibrium level. Final exergy (energy consumption and GDP can be (relatively) decoupled an extent determined by the ability to increase exergy efficiency.
Warr et al., 2010	4 count- ries	1900- 2000	Primary and useful exergy	Descriptive trend analysis	Finds marked increases in exergy and useful work during industrialization as well as a common and continuous decrease in primary exergy intensity of GDP (relative decoupling). The trend of increasing useful work intensity of GDP reversed in the 1970s (thereafter: relative decoupling).
Warr, 2011	Japan	1900- 2005	Primary and useful exergy	Descriptive trend analysis, Granger causality tests; LINEX producti- on function	Increases in useful exergy raise GDP, hence increases in the conversion of primary energy to useful exergy drive GDP growth ('economic growth engine'). Efficiency gains are required for GDP growth if resources are scarce.
Warr and Ayres, 2012	Japan and USA	1950- 2000	Useful exergy	Growth model using LINEX non-adjusted and adjusted ICT functions. Econometric time-series analysis.	The ICT-adjusted LINEX function using useful exerge capital and labor as inputs is able to describe the GDI trajectory well. The marginal productivity of useful exergy has increased in the US only between mid-70s and late 80s, while it has increased in Japan between 1950 and 1990. After 1990, both countries show a stable marginal productivity of useful exergy.
Serrenho et al., 2014	EU-15	1960- 2009	Useful exergy; final and useful exergy intensity	Econometric time series analysis	Final exergy intensity decreases faster in countries with higher intensities. Temporal trends are mainly explicable by efficiency improvements because useful exergy intensity shows no clear trend. Industrial high temperature heat and residential uses explain most of the variation in useful exergy intensities.
Serrenho et al., 2016	Portugal	1856- 2010	Useful exergy, useful exergy intensity	Descriptive trend analysis	Finds no temporal trend of useful exergy intensity in Portugal, suggesting that further reductions in primar energy (or exergy) intensity may only be achieved by increasing exergy efficiency. However, recently efficiency stagnates and no decoupling was observed.
Guevara et al., 2016	Mexico	1971- 2009	Final and useful exergy, useful exergy intensity	Descriptive trend analysis	Finds relative decoupling for final exergy, but an increasing useful exergy intensity of GDP (i.e. increasing coupling for useful exergy).
Jadhao et al., 2017	India	1970- 2010	Final exergy intensity	Descriptive trend analysis	Final exergy intensity (final exergy per unit GDP) decreased throughout the period.
Arango- Miranda et al., 2018	10 coun- tries	1971- 2014	CO ₂ , TPES and primary exergy	Panel data analysis	The study finds a high correlation between CO ₂ emissions, energy use, primary exergy input and GDI Neither an EKC type relation nor a causal relation between GDP and energy in the OECD was found.
Santos et al., 2018	Portugal	1960- 2009	Primary energy, useful exergy	Econometric methods: cointegration analysis, Granger causality test	Finds relative decoupling of primary energy and GDF until the 1980s, followed by stronger growth of prima exergy than GDP. Overall, no decoupling between GDP economic output and useful exergy. Finds cointegration of economic output and energy (primary energy or useful exergy), and that energy Granger- causes GDP growth.
Sakai et al., 2019	UK	1971- 2013	Final energy, useful exergy	Macroeconomic resource consumption model considering thermodynamic	Gains in thermodynamic efficiency are a key 'engine economic growth' that contributes 25% to the observ- increases of GDP. The tight coupling between global energy use and GDP is explained by investments into energy efficiency. Policy efforts to decouple energy

3.3 Comprehensive measures of material and energy flows

Studies analysed in this section are based on the social metabolism concept (Fischer-Kowalski, 1998); i.e. are studies that comprehensively trace flows of biomass, mineral resources, fossil fuels and many other materials respectively energy sources (Wiedenhofer et al., this issue). In addition to fossil fuels used for the supply of technical energy, biomass used as food and feed also constitutes an important part of a society's energy metabolism (Haberl, 2001). Material decoupling is also sometimes denoted as dematerialization (Bernardini and Galli, 1993; Cleveland and Ruth, 1998; Schandl and Turner, 2009). We find very few dematerialization studies prior to the 1990s (Table 2). As also discussed in part I, many of these studies are concerned with compiling MEFA data (MEFA is an extension of MFA that consistently accounts for material and energy flows; see part I) rather than with advanced statistical or econometric analyses, and only 11 econometric dematerialization studies are in our sample of 835 articles.

Long time series of harmonized MEFA data now enable researchers to analyse the interplay between political-economic and material development of countries. Especially at the national level, this analysis commonly analyse how trajectories of material use relate to major phases of socioeconomic or political development, including incisive political events such as the dissolution of the Soviet Union (Krausmann et al., 2016) or China's admittance to the World Trade Organisation (Velasco-Fernández et al., 2015). At the country level, decomposition analyses (Muñoz and Hubacek, 2008; Plank et al., 2018a; Wenzlik et al., 2015) have identified economic growth (of absolute or per capita GDP and/or monetary final demand) as the most important driver of consumption-based measures of resource consumption. (Yu et al., 2013) identified technological progress as the most important driver for China, while other drivers were found to have no significant impact on resource use (e.g., Rezny et al., 2019 for innovation). The links between GDP growth and material use are also the subject of global studies, covering either aggregated world regions (Behrens et al., 2007; Schaffartzik et al., 2014) or representative large (>100) samples of countries (e.g. Pothen, 2017; Steinberger et al., 2013; Steinberger and Krausmann, 2011). At the global scale, a period of relative decoupling after the 1970s was followed by a period starting ~2000 in which global material use accelerated at a similar pace as GDP (Krausmann et al., 2018). While many of the studies analyzed in this section apply production-based accounting principles, a substantial and rising fraction analyze resource flows from a consumption-based (or 'material footprint'; Wiedmann et al., 2015) perspective.

From country case studies based on simple data description to advanced statistical analyses of global samples, relative decoupling has been identified mainly for regions or countries with intermediate economic growth (e.g., USA, European countries) or in countries that experienced socio-economic and political turmoil with corresponding restructuring of their economies (Kovanda and Hak, 2007; Raupova et al., 2014). Absolute reductions of material flows are generally only found in periods of very low economic growth or even recession (Shao et al., 2017; Steinberger and Krausmann, 2011; Wu et al., 2019). Accelerated industrialization and high rates of economic growth, as observable in China in the last decades, often coincide with a growth of material use matching or even outstripping economic growth (Xu and Zhang, 2007). The post-World War II boom in the world's wealthiest economies is not widely analysed, with most studies relying on data that does not reach further back than 1970. Hence there is little opportunity to compare the rapid growth phase in the 1950s found by long-term studies (e.g., Gierlinger and Krausmann, 2012; Infante-Amate et al., 2015; Krausmann et al., 2011) with the currently similarly high growth rates in some countries. Better understanding the role of such

rapid growth phases for the following phase of slowed growth in domestic extraction and production in the 1970s (Giljum et al., 2014b; Schaffartzik et al., 2014) would be beneficial. At the same time, it appears that reductions or stagnation in the use of the domestic resource base is often associated with rising importance of trade. In contrast to those measures of decoupling based on territorial indicators, consumption-based perspectives unveil a reversal of trends with efficiencies deteriorating instead of improving and no evidence even for relative decoupling (Giljum et al., 2014a; Pothen and Schymura, 2015; Thomas O. Wiedmann et al., 2015a). The integrated, more holistic perspective achieved by considering trade-offs over longer periods as well as across spatial scales is important in assessing the possibilities of and necessary conditions for any future (relative or absolute) decoupling. Currently, decoupling appears to depend on prior use and accumulation of materials and on extractive expansion and rising material flows elsewhere. As long asthis is the case, decoupling cannot be achieved in the long-term or universally.

Table 2. Analysis of the studies on material and energy flow indicators (MEFA). Production- vs consumption-based perspective is explicit through the definition of the indicators, the latter including RMC, MF, TMR, TMC. Acronyms: DE ... Domestic Extraction; DMI ... Direct Material Input; DMC ... Domestic Material Consumption; DMF... Direct Material Flow; DPO...Domestic Processed Output; EE-IO...environmentally extended IO; GHG ... Greenhouse Gas emissions; IO... Input Output Analysis; IPAT...Impact=Population x Affluence x Technogy; KEI ... Knowledge Economy Index; MF ... Material Footprint; MI ... Materials Intensity (e.g. DMC/GDP); MP ... Material Productivity (inverse of MI); NAS ... Net Additions to Stock; PPC... Public and Private Consumption; PPP...Purchasing Power Parity; PTB ... Physical Trade Balance; RMC...Raw Material Consumption; RME...Raw Material Equivalents; RP...Resource Productivity (e.g. GDP/DMC); SDA...Structural Decomposition Analysis; TDO...Total Domestic Output; TEC... Technical Energy Consumption; TMC...Total Material Consumption; TMR ... Total Material Requirements; TPES ... Total Primary Energy Supply; USA...United States of America.

Refe- rence	Spatial refe- rence	Pe- riod	Indicator(s)	Me- thod(s)	Distance of GDP and resource growth	Interpretation
Kelly et al., 1989	USA	1977- 1987	Material consump- tion*	Descrip- tive	GDP grows 2.6%/y faster than consump- tion of energy & materials	Material consumption remained unchan- ged while GDP grew. Argued that effi- ciency of an economy is higher if its share of sectors extracting natural resources is lower.
De Bruyn and Op- schoor, 1997	19 coun- tries	1966- 1990	Material consump- tion* (selected resources)	Descrip- tive	Varies by country	Material intensity decreases in almost all countries, but not as part of a development that can be expected to be persistent.
Picton and Daniels, 1999	Austra- lia	1970- 1995	Material consump- tion* (selected resources)	Descrip- tive, per capita and per GDP	Materials used per GDP rise +70%, con- sumption +15%	Material consumption and production increased faster than GDP.
De Marco et al., 2000	Italy compa- red with others	1994	TMR and DMI	Descrip- tive	n.a.	Japan requires least materials (TMR) per unit GDP, US most.
Hoffrén et al., 2001	Finland	1960- 1996	DMI	Descrip- tive and decom- position	Material productivity (GDP/mass) rises by 75%.	Relative decoupling for total GDP, but decomposition by economic sectors and materials gives varying results, including rebound effects in some sectors.
Bringezu et al., 2003	EU and other coun- tries	Vari- able	TMR, MI, DMC, NAS	Descrip- tive	Variable	Relative decoupling found in most reviewed countries. Detailed information on the differences between TMR and DMI.
Canas et al., 2003	16 in- dustria- lized coun- tries	1960- 1998	DMI	Panel regressio n with 15 different models	Differs bet- ween countries and regression model	Multiple model specifications provide good statistical fits for an inverted U- shaped EKC, but since most countries are still in the increasing stage, the evidence for an actual curve is lacking.
Ščasný et al., 2003	Czech Repub- lic	1990- 2000	DMI, DMC, TMR, TMC, DPO, TDO	Descrip- tive	DMC growth rate is smaller than that of GDP	Dissolution of Soviet Union and the Velvet Revolution in the Czech Republic led to a collapse and fundamental restructuring of the economy.
Bringezu et al., 2004	16 coun- tries	Vari- able	DMI, TMR	Descrip- tive and panel analysis	Varies by country and time period	No evidence for EKC. Provides analysis of country-level differences, e.g. population density, economic structure or public policy.
Cañellas et al., 2004	Spain	1980- 2000	DMI, DMC	Descrip- tive	DMI +85% DMC +79% GDP +74%.	Does not even find relative decoupling.
Kraus- mann et al., 2004	Austria	1960- 2000	DMC	Descrip- tive	GDP +250% DMC +175%	Finds relative decoupling but total DMC grows by 175%.

Weisz et al., 2006	EU-15	2000	DMC, DE, PTB	Descrip- tive, cross- sectional	n.a.	Compares economic structures vs. lev of GDP as determinants of DMC of material groups.
Behrens et al., 2007	7 world regions	1980- 2002	DE	Descrip- tive	Varies by world region	Rising DE despite improved efficienc scale effects trump technology effects highlights need for dematerialization i industrialized countries
Hoffrén and Hellman, 2007	Finland	1970- 2005	DMF	Descrip- tive	DMF grows 1.7%/yr less than GDP	Private consumption more strongly drives GDP than public expenditure does, but private consumption is linke to far lower material flows than public expenditure.
Schulz, 2007	Singa- pore	1962- 2003	DMI, DMC	Descrip- tive, cor- relation	DMI grows 0.6%/yr less than GDP, DMC -1.9%/yr	Argues that economic growth is not possible without material growth and that urbanization drives material use upwards.
Vehmas et al., 2007	EU-15	1980- 2000	DMI, DMC	Decom- position	For EU-15, Δ PPC 49.8, Δ DMC per capita -3.1, Δ DMC/PPC -31.5	Weak decoupling of resources from GDP; DMC shows more de-linking th DMI.
Xu and Zhang, 2007	China	1990- 2002	TMR, DMC	Descrip- tive	TMR/GDP +56%, DMI/GDP +24%	No decoupling, both TMR and DMC grow faster than GDP.
Citlalic Gonzalez -Martinez and Schandl, 2008	Mexico	1970- 2003	DMC, DMI, PTB, DE, DMC/GDP	Descrip- tive, de- composi- tion (IPAT)	DMC +194% GDP/cap +62%	No dematerialization; population grov and exports drive material consumpti- over whole period; no efficiency gain DMC/GDP since 1970.
Hashimo- to et al., 2008	Japan	1995- 2002	DMI	Decom- position	Growth rate of DMI is 3%/y smaller than GDP	Material intensity could be reduced b final demand structure and recycling; decline in construction reduces mater intensity.
Kovanda and Hak, 2008	Czech Rep., Hun- gary, Poland, EU-15	1990- 2002	DMC, material producti- vity	Descrip- tive	Varies between countries	Relative decoupling resulting from structural and technological changes: material productivity (GDP/DMC) gr absolute decoupling observed in the Czech Republic.
Kovanda et al., 2008	Czech Repub- lic	1990- 2002	DMC, DPO, NAS, TDO, TMR, TMC	Descrip- tive	Depends on indicator.	Indexed material intensity indicators decreased from 1 (1990) to 0.68-0.48 with a smaller decline of material outflow indicators.
Moffatt, 2008	G7	2000	DMC, many other indicators	Cross- country analysis	n.a.	GDP is strongly negatively associated with DMC among the G7 countries
Muñoz and Hubacek, 2008	Chile	1986- 1996	DMI	Structural decom- position analysis	DMI grew by 127%, GDP by 10%/y	GDP mainly driven by primary commodities (copper); declining ore quality drove up material intensity.
Schandl et al., 2008	Austra- lia	1970- 2005	DMC, DE, PTB	Descrip- tive	Resource productivity stable at ~0.4 US\$ PPP/kg	Australia's resource productivity is stable; it is only half of other OECD countries due to large raw material se and inefficient domestic supply system
	Ianan	2000-	GDP/DMI	Descrip-	GDP per DMI rises by 25%	Growth of real GDP accompanied by decrease in DMI

AUTHOR SUBMITTED MANUSCRIPT - ERL-108566

Kraus- mann et al., 2009	Global	1900- 2005	DE=DMC	Descrip- tive	GDP growth factor: 22.8 DMC growth factor: 8.4	Relative decoupling of DMC and GDF coinciding with large (factor 8) increas in material use.
Schandl and Turner, 2009	Austra- lia	1950- 2011	DMI	Descrip- tive	DMI growth factor: 10 GDP growth factor: 50	Finds relative decoupling but strong growth of total DMI.
Wood et al., 2009	Austra- lia	1975- 2005	TMR	Econo- metric time- series analysis	Variable secto- ral trends in TMR intensity per \$ value added	Improvements in material intensity reduces growth of material flows.
Kovanda et al., 2010	Czech Repub- lic	1990- 2006	DMC, DMI, TMR	Descrip- tive	DMI -23% DMC -35% TMR -27% GDP +31%	Improved material productivity in this time period, related to accession to the EU but linked to increase in foreign trade, and less to transformations with the economy towards services
Schandl and West, 2010	Asia- Pacific and sub- regions (46 coun- tries)	1970- 2005	DE/cap, DMC, Material intensity (DMC /GDP)	Descrip- tive	Material inten- sity fluctuating around ~2.4 kg/US\$ until 1990, then rising over 3 kg/US\$.	Resource use of the Asia-Pacific regio is steadily growing and shows no sign of slowing down; no decoupling.
Steinber- ger et al., 2010	175 coun- tries	2000	DMC per capita, per area, per GDP for 4 material categories, Gini coefficient	Regres- sion, STIR- PAT	n.a.	Material consumption is unequally distributed, but less unequal than GDF Material productivity is correlated wit income, most strongly so for biomass.
OECD, 2011	China	1997- 2007	RMC (MF)	Structural decom- position analysis	RMC +71%	Material intensity decreases until 2002 and increases afterwards.
Kovanda and Hak, 2011	Czech Repub- lic	1918- 2005	DMC	Descrip- tive	DMC grows 2.8%/y less than GDP	Material productivity development co allow achieving a level comparable to that of the EU-15 as a consequence of structural/political change.
Krausma nn et al., 2011	Japan	1878- 2005	DMC, DE, import, export, TPES	Descrip- tive	Overall GDP growth factor is 97, for DMC 49	Japans DMC peaked in 1973 and fell afterwards (absolute decoupling); 200 one of the lowest DMC/cap among his income countries; but almost 50% of DMC from imports – MF likely much higher.
Steger and Bleischw itz, 2011	EU15/E U25	1980- 1992- 2000	DMC	Panel analysis	n.a.	The main drivers of resource use are energy efficiency, new dwellings and road construction.
Steinberg er and Krausma nn, 2011	~150 coun- tries	2000	DMC	Regres- sion	n.a.	Ratios of GDP:DMC vary between materials; biomass is independent of income, but use of fossils, minerals ar ores depends on GDP.
Weinzet- tel and	Czech Repub- lic	2000- 2007	RMC	Structural decompo sition analysis	GDP grows by 36%; RMC by 9%	Technology-driven gains in resource efficiency cannot compensate for risin consumption due to GDP growth (crue oil, metal ores, construction materials,

Haberl et al., 2012	>140 coun- tries	2000	Various resource use indicators	Regres- sions	DMC correlates well with GDP; final biomass use even more strongly.	Shows that indicators such as biomass consumption and total DMC are strongly correlated with GDP ($r^2 \sim 0.7$).
Nita, 2012	Roma- nia	2000- 2007	Many resource use indicators	Descrip- tive	MI increased from 2.4 to 3.9 t/lei; RP decreased from 0.17 to $0.12€/kg$.	Romanian GDP grew on average by 2.2%/yr while material consumption inceased at a faster rate; hence no decoupling. Energy use remained more or less constant.
Schandl and West, 2012	China, Australi a, Japan	1970- 2005	DE, PTB, DMC, MI	Descrip- tive, decom- position (IPAT)	MI decreased by 60% in Japan and 40% in China	No decreases in MI in raw material exporting Australia, but improvements importing countries; picture would change when looking at MF.
Yabar et al., 2012	China, Japan	2000- 2010	GDP/DMI	Descrip- tive	RP of DMI rises by 40%	Relative decoupling of GDP from DMI
Gan et al., 2013	51 coun- tries	2000	DMC	Descrip- tive, cross- country	Resource pro- ductivities (dol- lar/kg) for all country-sub- groups, from 0.25 to 1.5	GDP per capita, economic structure and population density are the three factors with the greatest contribution explainin resource productivity
Wang et al., 2013	China	1995- 2008	TMR	Decom- position	TMR: 4.4%/yr, GDP 8.9%/yr	Relative decoupling of TMR from GDF
West and Schandl, 2013	Latin Ameri- ca and Caribbe an	1970- 2008	DMC/GDP	Descrip- tive	MI increased from 2,6 to about 2.9 kg/\$.	Latin America and the Caribbean had a high MMI compared to the rest of the world in 1970; MI grew until 2008 whi MI decreased globally. High intensities in Chile and Peru linked to non-ferrous metal exports.
Steinberg er et al., 2013	38 coun- tries	1970- 2004	DMC, fossil CO ₂	Panel analysis, cluster analysis	Differs among countries.	Absolute long-term decoupling of DMC for Germany, UK, Netherlands and son others; EKC-like behavior observed for CO ₂ in "mature" economies, emerging countries have higher long-term couplin of GDP and materials
Yu et al., 2013	China	1978- 2010	DE, TEC, CO ₂	Decom- position	Growth rates 1978-2010: GDP: *19.5, DE *4.5, TEC *4.7	Authors found relative decoupling between GDP and DE and GDP and TEC.
West et al., 2014	Eastern Europe, Cauca- sus, Central Asia	1992- 2008	DMC, DMC/cap, PTB, PTB/cap, MI	Descrip- tive, decom- position (IPAT)	MI falls by 2.8%/y	Very high MI after dissolution of Sovie Union, strongly falling MI afterwards during high GPD growth.
Lee et al., 2014	South Korea	2000-2010	DMC	Descrip- tive	DMC increased by 8%, GDP by >50%	Absolute decoupling; DMC falls, and increases in resource productivity are very high; authors claim this was due to resource management policies.
Raupova et al., 2014	Uzbeki stan	1992- 2011	DMI, DMC, TMR, CO ₂	Descrip- tive	DMI +2.8%/yr TMR +2.3%/yr GDP: +4%/yr	Relative decoupling, material efficiency (GDP/DMI) increased.
Fishman et al., 2014	USA, Japan	1930- 2005	DMC, Material Stock, Removal	Descrip- tive	Since 1960s, DMC productivity *2 in USA, *2.5 in	Analyzed coupling of DMC, material stocks, and GDP from 1930 to 1970s. In US relative decoupling since 1970 for DMC and weaker decoupling for stocks

1
י ר
2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
12
15
14
15
16
17
18
10
19
20
21
22
23
24
24
25
26
27
28
29
30
20
31
32
33
34
35
26
20
37
38
39
40
/1
41
42
43
44
45
46
47
40
48
49
50
51
52
53
55
54
55
56
57
58
59
60
00

					productivity *2 in USA, *6 in Japan	In Japan relative decoupling only for DMC, not for stocks.
Wang et al., 2014	Taiwan	1993- 2012	DMC, DMI, DPO	Descrip- tive	DMI grew by 2.8%/y, DMC by 2.1%/y and GDP by 5%/y on average over period	Relative decoupling: DMI and DMC grew less than GDP.
Infante- Amate et al., 2015	Spain	1860- 2010	DMC	Descrip- tive	Material intensity -86%	Relative decoupling; structural breaks in the rate of decoupling in 1880, 1940, and 1980, coinciding with historical events.
Maung et al., 2015	Myanm ar, Phi- lippi- nes, Ban- gladesh	1985- 2010	DMC	Decom- position (IPAT)	Material intensity falls in all three countries	Decreasing material intensities due to improved technological efficiency.
Pothen and Schymur a, 2015	Global	1995- 2008	DE	Decom- position	GDP +59% DE +56%	No evidence for global dematerialize- tion; GDP growth is the strongest factor behind growing material use.
Wenzlik et al., 2015	AUT	1995- 2007	RMC	Structural decom- position	n.a.	Generally, GDP growth drives RMC; during phases of low economic growth, the composition of consumption trends towards inefficient products and services.
Wiedman n et al., 2015	186 coun- tries	1990- 2008	Material footprint MF, DMC	EE-IO, descripti- ve trend analysis; cross- country regres- sion	For 1% GDP growth, MF rises by 0.6%, DMC by 0.15%	No increases in resource productivity for developed countries in last decades ; relative decoupling of DMC and GDP, little or no decoupling of MF and GDP.
Krausma nn et al., 2016	Russian Federa- tion and its prede- cessors	1900- 2010	DMC for material groups, MP	EW- MFA, descripti- ve	MP of biomass grew strongly, growth/decline phases for MP of fossils and minerals.	Overall, relative decoupling: GDP grew 10 times faster than DMC/cap early on, growth rates declined thereafter. Material productivity (GDP/DMC) grew fast in stagnation phase (1978-1991) and collapse phase (1992-1998).
Ward et al., 2016	6 coun- tries	1990- 2010	Total material use	Descrip- tive	Varies by country	Argue that growth in GDP cannot be decoupled from material and energy use.
Bithas and Kalime- ris, 2017	World	1900- 2010	DE for non- combustib- le materials	Descrip- tive	GDP/DE rises by 2%/y, GDP/(cap*DE) by 0.7%/y	Relative decoupling; decoupling rates are smaller when dividing per-capita DE by total GDP as a result of population growth.
Chiu et al., 2017	Philip- pines	1980- 2008	DMC	Descrip- tive; decom- position (IPAT)	No significant change throughout the period.	Slight decoupling is due to recessions and economic crises, no robust decoupling.
Krausma nn et al., 2017b	World	1900- 2010	DE, material stocks	Descrip- tive	GDP grew 27- fold, DE grew 11-fold, stocks grew 23-fold	Finds relative decoupling between global material use and GDP but no decoupling between material stocks and GDP.
Kallis, 2017	Global	1980- 2014	DE=DMC	Descrip- tive	DMC +110% GDP + 150%	Claims that the current economic system cannot lead to the required "radical" level of dematerialization.
	Global	1980-	DMC, MP	Descrip-	Growth factor of DMC was 8	Relative decoupling slowed after 2002; currently re-materialization due to fast

	1	r			[
						to less resource efficient countries
Martinico -Perez et al., 2017	Philippi nes	1985- 2010	DMC	IPAT	GDP +200% DMC +100%	Aggregate indicators (national DM GDP etc.) hide large inequalities between small elites and the major the population.
Pothen, 2017	Global and 40 coun- tries	1995- 2008	RMC (MF)	Decom- position (LMDI)	Global RMC rises by +44%	Material intensity decreases (relative decoupling).
Shao et al., 2017	150 coun- tries	1970- 2010	DMC for 4 material categories	Dynamic panel data model	DMC growth factor 2.9 GDP growth factor 3.8.	Relative decoupling at the global le until early 2000s, then GDP and D grow in unison until 2009. Short al decoupling 1990-1992.
Wang et al., 2017	China, provi- nces	2002- 2012	Material use, similar DMC	Decompo sition (LMDI)	n.a.	Two thirds of the Chinese province show no decoupling, 9 provinces re decoupling, absolute decoupling in Shanxi and Shanghai. GDP growth strongest driver of material use.
Zhao, 2017	China	1978- 2008	DMI	Descrip- tive	Growth factor of DMI 5.6, GDP 16.5, GDP/DMI 2.9	Material efficiency improved dramatically until 2000 but fluctua around a flat line since then.
Bithas and Kalimeris , 2018	World	1900- 2009	DE	Descrip- tive	GDP/DE grows by 3%/y; GDP/(DE*cap) by 0.7%/y	Relative decoupling of GDP from but not on a per-capita basis.
Bleischw itz et al., 2018a	Germa- ny, China, US, UK, Japan	Va- ried	Apparent Domestic Consump- tion	Descrip- tive	n.a.	Studied countries have achieved a saturation stage for key materials (copper, cement); stock-building set saturate as well.
Martinico -Perez et al., 2018	Philip- pines	1980- 2014	DMC	Descrip- tive	DMC grows 0.5%/yr less than GDP	Improved resource efficiency due t growing service sector, greater mai efficiency of industry, and technolo improvements.
Meyer et al., 2018	Global	1980/ 2015	DE (4 material categories)	Descrip- tive	Depends on indicator	Overall finds relative decoupling o global level but fossil fuels rose in parallel to GDP since 2000s; ores a minerals rise faster than GDP.
Plank et al., 2018	Global and 9 regions	1990- 2010	RMC, MF	Structural decompo sition analysis (SDA)	global RMC +87%	Relative decoupling: material inten decreases but raw material consum keeps growing.
Schandl et al., 2018	Global, sub- regions	1970- 2010	DMC, DMI, PTB, DE, RME of trade, MF, RMC, DMC/GDP	Descrip- tive, Decom- position (IPAT)	Material intensity remains largely constant.	Material intensity of global econom (kg/\$) almost stable from 1970 to 2 global material footprint per capita been growing from 1990 to 2010. I drivers of growing material use are and population growth.
Vuta et al., 2018	EU-28	2005- 2016	GDP/DMC	Panel data analysis (level- level model)	Resource productivity growth of 1 unit leads to a change in GDP growth rate of 0.75%	Finds a positive relationship betwe real GDP growth and resource productivity.
West and Schandl, 2018	Global	1970- 2008	DMC	Panel analysis, decom- position	n.a.	Besides population and affluence, socio-economic variables do contri little to explain DMC variations ac countries – nation as inappropriate of analysis

4	
5	
6	
7	
,	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	459
23	460
24	461
25	161
26	402
27	463
27	464
20	465
29	405
30	466
31	467
32	468
33	160
34	409
35	4/0
36	471
37	472
20	172
20	473
39	4/4
40	475
41	476
42	477
43	478
44	470
45	4/9
46	480
47	481
48	482
49	182
50	404
51	484
52	485
53	486
54	487
55	-TU/
55	488
50	

57 58 59

60

Wood et al., 2018	Global	1995/ 2011	Global DE, GHG, others	Descripti ve; IO; regional comparis on	Global DE grows +36%, i.e. faster than GDP	No decoupling; material use grows fastest among all indicators (GHG, energy, blue water, land use); flows embodied in trade are growing and result in displacement to developing regions.
Fernánde z-Herrero and Duro, 2019	94 coun- tries	1990- 2010	DMC	Econo- metric timese- ries anal.	Material productivity increased by 31%	Material productivity increased over time, but also inequalities in MP growth between countries increased.
IEA, 2019	2 coun- tries each from BRICS, OECD	2000- 2007	DE	Decoup- ling indicators derived from IPAT	Differs between countries	Absolute decoupling in Japan and for some time in the US; relative decoupling in US, Russia and China. It is argued that absolute decoupling in OECD countries is due to their lower GDP growth rates.
Rezny et al., 2019	130-40 coun- tries	1995- 2012	MF, KEI	Descrip- tive	n.a.	No significant link between innovation (measured by the knowledge Economy Index KEI) and resource efficiency.
Wu et al., 2019	157 coun- tries	1980- 2011	DMC	Descrip- tive	DMC grows 1.25% less than GDP	Absolute dematerialization occurred only during periods of recession or low economic growth.

461 3.4 (De)coupling GDP from total GHG emissions

Reporting of territorial CO₂ emissions from fossil fuel combustion and industrial processes such 462 463 as cement manufacture is rather straightforward because these emissions can be calculated stoichiometrically from fuel use respectively cement production data. These emissions have 464 been reported for a long time, and are readily available from sources such as CDIAC (Carbon 465 Dioxide Information Analysis Center, https://cdiac.ess-dive.lbl.gov/) for many countries and 466 the global total. Hence, there is a large literature on the decoupling of GDP from territorial CO₂ 467 emissions (section 3.1). By contrast, full GHG accounts also need to quantify emissions from 468 469 land-use and land-cover changes (LULUCF) as well as highly uncertain and strongly context-470 dependent emissions such as those of CH₄ and N₂O. The quantification of "carbon" respectively GHG footprints (i.e., consumption-based accounts of carbon or GHG emissions) started a bit 471 472 over a decade ago (Hertwich and Peters, 2009; Lenzen et al., 2013; Peters et al., 2011; Peters and Hertwich, 2008),³ and up to now these studies generally include only fossil-fuel and 473 industrial-process related emissions, whereas LULUCF emissions of carbon (i.e. changes of the 474 475 carbon balance of ecosystems resulting from land use, land-use change or forestry) are not 476 systematically accounted for in these databases.

478 Five studies (Lozano and Gutiérrez, 2008, Valadkhani et al., 2016, Beltran-Esteve and Picazo-Tadeo, 2017, Bampatsou et al., 2017, Wang et al., 2019) use Data Envelopment Analysis 479 480 techniques, a method providing efficiency rankings of countries, which show that most 481 countries could reduce their emissions if catching up with the most efficient ones, but does not 482 directly deliver insights on decoupling. Studies searching for an EKC often find no indication 483 for the existence of a turning point (Li et al., 2007; Koirala et al., 2011), not even a large-scale 484 study of 129 countries (Sanchez and Stern, 2016) as well as a global study (Fernandez-Amador 485 et al., 2017). A study of 27 EU countries found differently shaped EKCs, but only four countries with an inverted U shape (Jesus Lopez-Menendez et al., 2014). A study on Australia 1970-2007 486 487 found some evidence for an EKC related to energy, and a declining trend for GHG per GDP 488 (Sarkodie et al., 2019). Another study predicts an EKC for Russia (Yang et al., 2017), another

³ These studies were not found by the search query as they lacked keywords filtered by the query. We crosschecked elasticities between GHG footprints and GDP as reported in these studies (where available), which confirmed the results of the literature analyzed in Table 3.

489 an EKC for CH4 for Sub-Saharan Africa (Zaman et al., 2017). Overall, however, there is little
490 support for the inverted U-shape hypothesis.
491

A considerable number of studies used descriptive trend analyses, generally finding relative decoupling, for example for the OECD 1970-2001 (Guillet, 2010), the Czech Republic (Solilová and Nerudová, 2015) and China (Cohen et al., 2019). A study of OECD countries covering 1999-2012 found that GHG emissions were constant while GDP grew on considerably (Gupta, 2015). A study for Greece (Angelis-Dimakis et al., 2012) found that GHG emissions were highest around the year 2000 and then declined somewhat. Decomposition analyses generally find GDP to be an upward driver of GHG emissions. For example, Duarte et al., 2013 find that GDP-induced demand growth overwhelmed technology-induced GHG emission reductions in 11 industrialized countries 1995-2005; similar results were reported for the Baltics (Streimikiene and Balezentis, 2016). Xu et al., 2014 show that in China 1996-2011, GDP growth was the most important driver of rising emissions. By contrast, from 1999-2009 the EU-27 overall slightly reduced energy use and CO₂ emissions through structural change and improved energy/CO₂ efficiency; GDP growth counteracted but not annihilated these efficiency improvements (Cruz and Dias, 2016). In Australia, total GHG emissions have been slightly reduced, whereas industrial CO₂ emissions continued to increase, which was achieved by reductions in LULUCF/agricultural emissions (Leal et al., 2019). Econometric studies are rare, examples include Knight and Schor, 2014, Khan et al., 2017, Bader and Ganguli, 2019.

Footprint studies often find that territory-based emissions grow more slowly or even fall while consumption-based emissions increase (e.g., UK 1992-2004, see Baiocchi and Minx, 2010; global: Simas et al., 2017). There are, however, necessarily also countries where the situation is reversed, e.g. Norway 1980-2000 (Faehn and Bruvoll, 2009). In 29 high-income countries for the period 1991-2008, GDP was found to drive both territorial and consumption-based emissions; relative decoupling existed for territorial but not for consumption-based CO2 (Knight and Schor, 2014).

Decoupling was found to be insufficient for reaching climate targets in a study of 120 countries for 2005-2015 (Fanning and O'Neill, 2019). Absolute decoupling is found in a footprint-study of GHGs for Sweden 2008-2014 (Palm et al., 2019). Most noteworthy is a study of 18 countries with declining CO₂ emissions (both consumption and production-based) that is discussed in more detail in section 5 (Le Quéré et al., 2019). Overall, the studies summarized in Table 3 suggest that very recently, absolute decoupling between GDP and CO₂ or GHG emissions can be found in some countries, but even in those cases decoupling is so far insufficient to address stringent climate targets, and it is driven by policies promoting renewable energy and energy efficiency (Le Quéré et al., 2019).

Table 3. Analysis of the studies on GHG emissions and CO₂ footprints. Acronyms: BRICS...Brasil, Russia, India, China, South-Africa; DEA... Data Envelopment Analysis; EEA...European Environment Agency; EKC...Environmental Kuznets Curve; EU...European Union; EXIOBASE...acronym of an multi-regional environmentally extended input-output database; GHG...Greenhouse Gas; IDA...Index Decomposition Analysis; IPAT...Impact=Population x Affluence x Technology; LMDI...Logarithmic Mean Divisia Index; LULUCF...Land Use, Land Use Change, and Forestry; MARKAL...MARKet ALlocation model; MRIO...Multi-Regional Input-Output Analysis; OECD...Organization of Economic Co-Operation and Development; RoW...Rest of the World; UNFCCC...United Nations Framework Convention on Climate Change; UK...United Kingdom: USA...United States of America: WIOD...World Input Output Database

•	rungaoin, e	Sillinea	i bitates e	i i iiiieiieu,	Wie Din Wolla input o'ulput Dutaoabe.				
	Reference	Country	Period	Territo-	Indica-	Method(s)	Interpretation, including quantitative		
				rial or	tor(s)		measures of decoupling (if available)		
				footprint					
	Li et al.,	77 studies,	1992-	Presu-	CO ₂ , full	Meta-analysis	No reliable EKC observed regarding CO ₂		
	2007	588	2005	mably	GHG	of EKC	and/or GHG emissions; specifically no		
						studies	- · ·		

1
2
3
4
5
6
7
8
9
10
11
12
12
1/
14
16
10
1/
10
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45 46
40
47 10
40
49 50
5U
51
52
53
54
55
56
57
58

Г	observa	<u> </u>	territo_			income turning point identified even
	tions		rial			though studies report EKC.
Lozano	USA,	1990-	Terri-	Primary	Data Envelop-	DEA compares different countries and
and	compared	2005	torial	energy,	ment Analysis	estimates GHG reductions that would rea
Gutiérrez,	to Kyoto			total GHG	(DEA)	from application of "best practice", e.g.,
2008	protocol			emissions		GHG emissions of the USA could be
	Annex I			excluding		lowered by ~60% even at 3% GDP grow
				LULUCF		rates by adopting the best efficiency in t
						country sample.
Faehn and	Norway	1980-	Foot-	GHG	Calculation of	Finds relative decoupling between GDP
Bruvoll,		2000	print	emissions	emission "lea-	GHG emissions. Net leakages (GHG
2009				excl.	kages" using	related to export subtracted) declined.
				LULUCF	emission	
D 1 1		1000		~~	coefficients	
Baiocchi	UK	1992-	Territori	CO_2	MRIO,	Territorial improvements in CO ₂ emission
and Minx,		2004	al, 100t-		decomposition	overcompensated by supply-chain
2010			print			emissions; local decoupling, but not at
Cuillat	OECD	1070	Tomito	Duing our r	Cranhinal	Blots data showing that CUC amissions
2010	COuntries	2001	rial	energy	orapilical analysis of	rose by a factor of $1.1.4$ mimory or array
2010	countries	2001	1141	GHG	trajectorics	and GDP = 2.5 in the OECD
				emissions	ajectories	
Koirala et	878	1992-	Various	CO ₂ and	Meta-analysis	Turning point at ten times current world
al., 2011	observa-	2009	, anous	others	of EKC	GDP/cap, i.e. outside observational space
an, 2011	tions 103	2007		oulois	studies	concludes that there is no FKC for CO ₂
	studies					
Angelis-	Greece	1960-	Terri-	Primarv	Sustainability	GHG emissions rose over the entire peri
Dimakis		2007	torial	and final	analysis rela-	with declining growth rates towards the
et al.,				energy,	ting trajecto-	of the period. GHG/GDP was highest
2012				GHG	ries of various	~1990-2000 and declined somewhat
				emissions	indicators	thereafter
Duarte et	11 indu-	1995-	Foot-	CO ₂	MRIO,	Technological efficiency improvements
al., 2013	strial	2005	print	emissions	decomposition	overcompensated by growing demand.
	countries					
West et	China	1979-	Territori	GHG	Trend analysis	CO ₂ intensity of GDP more than halved
al., 2013		2008	al	emissions		between 1970 and 2005, still much high
						than in many other countries
Arto and	Global	1995-	Territori	GHG	Structural	Consumption is the main driver of globa
Dietzenba		2008	al and		decomposition	GHG emission increase.
cher, 2014	20 1:-1	1001	Tootprint	<u> </u>	Vanalysis	CDD arrest have a residing offerst on hot
Knight	29 high-	2008	torial	CO ₂	various	GDP growin has a positive effect on bol
2014	countries	2008	and	evoluding	nonel analysis	emissions. Relative decoupling exists for
2014	countries		footprint		methods	territorial but not for consumption based
			iooipiint	Lelleer	methous	CO ₂
Xu et al	China	1996-	Terri-	GHG	LMDI	GHG emissions more than doubled and
2014	Jiiiiu	2011	torial	from	decomposition	GDP growth was the most important dri
2011				fossil	analysis. 5	energy intensity improvement was the m
				energy use	sectors	important counteracting factor.
Jesus	EU27	1996-	Terri-	GHG	Panel analysis	Finds different shapes of the EKC: the
Lopez-		2010	torial	emissions	based on the	inverted U shape is only found in 4 out
Menendez				from	EKC concept	27 countries
et al.,				Eurostat	Ĩ	
2014						
Gupta,	OECD	1999-	Territo-	Primary	Descriptive	Descriptive study analyzing the relation
2015	member	2012	rial	energy,	trend analysis	between a multitude of environmental o
	countries			CO ₂	-	biophysical indicators and GDP in the
		Ĩ.		emissions,		OECD. Nominal GDP rose 4% faster the
				GHG		GHG emissions. GHG remained largely
		<u> </u>		emissions		constant despite noticeable GDP growth
Robaina-	EU 27	2000-	Territo-	Total	Stochastic	Benchmarks countries in terms of their e
Alves et		2011	rial	GHG	frontier and	efficiency (GPD/GHG), considering inp
al., 2015				emissions	max. entropy	such as capital, labor, fossil & renewabl
				from EEA	models	fuels
	Czech	1990-	Territo-	GHG	Descriptive	Finds relative decoupling (falling emiss
Solilová	D 11	0011				intensity and energy intensity) of the Co
Solilová and	Republic	2011	rial	emissions	trend analysis	intensity and energy-intensity) of the C2

7015				Eurostat		
Cruz and	EU-27	1999_	Territo-	Unspeci-	Index	EU-27 overall slightly reduced energy
Dias	L0-27	2009	rial and	fied CO ₂	decomposition	and CO_2 emissions by moving into les
2016		2007	footprint	and ener-	analysis	energy/CO ₂ -intensive structures and
2010			iooipiini	and ener-	(I MDI) using	improving sectoral energy/CO ₂ efficie
				gy mulca-	(LMDI) using	GDD growth did counterpat but not
				tors	wiOD data	GDP growth did counteract but not
~					-	annihilate efficiency improvements.
Gazheli et	Denmark,	1995-	Territo-	Sectoral	Input-output	Analyses efficiency, structural effects
al., 2016	Germany,	2007	rial and	CO_2	analysis	consumption on a sectoral level; finds
	Spain		footprint	emissions	(WIOD data);	robust trends towards green growth (e
	_		_	(unclear	correlation	technological change or structural cha
				definition	analysis	demand); stresses the need for system
				of	2	solutions.
				processes)		
Grand.	Argentina	1990-	Territo-	Full GHG	Trend analysis	The main contribution of this paper is
2016	8	2012	rial	emissions	based on a	clarify various meanings of weak and
2010		2012	Tiur	emissions	systematic	strong decoupling: argues for a focus
					distinction of	should a reductions of omissions insta
						absolute reductions of emissions miste
					different	decoupling, which is no robust concept
					meanings of	unstable economies. GDP grew ~1.9%
n 1	1.	1005			decoupling	Taster than GHG
Fan et al.,	14 coun-	1995-	I errito-	CO ₂ from	Multi-	Production-based accounts of CO ₂
2016	tries and	2009	rial and	fossil	Regional	emissions reveal large variation of
	RoW		footprint	fuels &	Input-Output	CO ₂ /GDP ratios (all countries plotted
				industrial	analysis based	one graph); consumption-based accou
				processes	on WIOD	reveal a monotonously positive relation
				•		CO ₂ /GDP ratios, with some national-l
						exceptions.
Lenzen et	Australia	1976-	Foot-	GHG	Structural	Commentary-style article presenting a
al 2016	ridotrana	now	print	emissions	decomposition	reanalysis of nublished past and scena
al., 2010		(2050)	print	(system	analysis of	data: questions whether technological
		(2050)		(system)	analysis of	ahanga aan suffice to realize these
				boundary	past data and	change can suffice to realize these
				not clearly	scenario	scenarios.
. .	TIC 4	1005	—	specified)	studies	
Liang et	USA	1995-	Territo-	GHG	Structural	Absolute decoupling of territorial GH
al., 2016		2009	rial,		decomposition	emissions: found a 3% reduction in
			con-		analysis	emissions while GDP increased by 42
			sumptio			
			n, inco-			
			me			
Liobikien	Baltic	1990-	Territo-	GHG	Decomposi-	Collapse of GHG emissions after 199
e et al.,	states	2012	rial		tion analysis	Since then slow increase of GHG emi
2016					(Divisia IDA)	with economic recovery. Investments
					()	
					,	correlated with relative decoupling.
Kerimray	Kazakhsta	1990-	Terri-	GHG	Data analysis	correlated with relative decoupling. Main focus of the paper are future
Kerimray et al.,	Kazakhsta n	1990- 2010	Terri- torial	GHG emissions	Data analysis for past tra-	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2
Kerimray et al., 2016	Kazakhsta n	1990- 2010 (scena	Terri- torial	GHG emissions (UNF-	Data analysis for past tra- jectories.	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by
Kerimray et al., 2016	Kazakhsta n	1990- 2010 (scena rios	Terri- torial	GHG emissions (UNF- CCC)	Data analysis for past tra- jectories, MARKAL for	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the For
Kerimray et al., 2016	Kazakhsta n	1990- 2010 (scena rios 2030)	Terri- torial	GHG emissions (UNF- CCC), Total	Data analysis for past tra- jectories, MARKAL for future	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union, CHG intensity of CDP.
Kerimray et al., 2016	Kazakhsta n	1990- 2010 (scena rios 2030)	Terri- torial	GHG emissions (UNF- CCC), Total	Data analysis for past tra- jectories, MARKAL for future scenarics	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3 4kg/(5 to 2 0kg/)
Kerimray et al., 2016	Kazakhsta n	1990- 2010 (scena rios 2030)	Terri- torial	GHG emissions (UNF- CCC), Total primary	Data analysis for past tra- jectories, MARKAL for future scenarios	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$
Kerimray et al., 2016	Kazakhsta n	1990- 2010 (scena rios 2030)	Terri- torial	GHG emissions (UNF- CCC), Total primary energy	Data analysis for past tra- jectories, MARKAL for future scenarios	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$
Kerimray et al., 2016	Kazakhsta n	1990- 2010 (scena rios 2030)	Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply	Data analysis for past tra- jectories, MARKAL for future scenarios	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forn Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$
Kerimray et al., 2016 Sanchez	Kazakhsta n	1990- 2010 (scena rios 2030)	Terri- Terri-	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati-	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forn Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$
Kerimray et al., 2016 Sanchez and Stern,	Kazakhsta n 129 countries	1990- 2010 (scena rios 2030) 1971- 2010	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and
Kerimray et al., 2016 Sanchez and Stern, 2016	Kazakhsta n 129 countries	1990- 2010 (scena rios 2030) 1971- 2010	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement;	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂
Kerimray et al., 2016 Sanchez and Stern, 2016	Kazakhsta n 129 countries	1990- 2010 (scena rios 2030) 1971- 2010	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non-	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ twice that of other GHGs. The time eff
Kerimray et al., 2016 Sanchez and Stern, 2016	Kazakhsta n 129 countries	1990- 2010 (scena rios 2030) 1971- 2010	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver-	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ and twice that of other GHGs. The time eff negative for both industrial CO ₂ and constrained to the the time of time of the time of the time of t
Kerimray et al., 2016 Sanchez and Stern, 2016	Kazakhsta n 129 countries	1990- 2010 (scena rios 2030) 1971- 2010	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial GHG	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver- gence approa-	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ and twice that of other GHGs. The time eff negative for both industrial CO ₂ and of GHGs, but the former effect is stronger
Kerimray et al., 2016 Sanchez and Stern, 2016	Kazakhsta n 129 countries	1990- 2010 (scena rios 2030) 1971- 2010	Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial GHG	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver- gence approa- ches	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ and twice that of other GHGs. The time ef- negative for both industrial CO ₂ and c GHGs, but the former effect is stronger than the latter.
Kerimray et al., 2016 Sanchez and Stern, 2016	Kazakhsta n 129 countries	1990- 2010 (scena rios 2030) 1971- 2010	Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial GHG	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver- gence approa- ches Index	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ and twice that of other GHGs. The time ef- negative for both industrial CO ₂ and co GHGs, but the former effect is stronger than the latter. Energy intensity and economic growth
Kerimray et al., 2016 Sanchez and Stern, 2016 Streimikie ne and	Kazakhsta n 129 countries Bulgaria, Estonia	1990- 2010 (scena rios 2030) 1971- 2010	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial GHG emissions	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver- gence approa- ches Index decomposition	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ and GHGs, but its effect on industrial CO ₂ and GHGs, but the former effect is strong than the latter. Energy intensity and economic growth the main drivers of GHG per capital CO ₂
Kerimray et al., 2016 Sanchez and Stern, 2016 Streimikie ne and Balazartia	Kazakhsta n 129 countries Bulgaria, Estonia, Latvia	1990- 2010 (scena rios 2030) 1971- 2010 2004- 2012	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial GHG emissions (no clear	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver- gence approa- ches Index decomposition analysis using	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forn Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ twice that of other GHGs. The time ef- negative for both industrial CO ₂ and c GHGs, but the former effect is strong than the latter. Energy intensity and economic growt the main drivers of GHG per capita. C amissions per capita increased descited
Kerimray et al., 2016 Sanchez and Stern, 2016 Streimikie ne and Balezentis 2016	Kazakhsta n 129 countries Bulgaria, Estonia, Latvia, Lithuaria	1990- 2010 (scena rios 2030) 1971- 2010 2004- 2012	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial GHG emissions (no clear dafinitian)	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver- gence approa- ches Index decomposition analysis using the Kerro	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ and GHGs, but its effect on industrial CO ₂ and c GHGs, but the former effect is stronge than the latter. Energy intensity and economic growth the main drivers of GHG per capita. C
Kerimray et al., 2016 Sanchez and Stern, 2016 Streimikie ne and Balezentis , 2016	Kazakhsta n 129 countries Bulgaria, Estonia, Latvia, Lithuania,	1990- 2010 (scena rios 2030) 1971- 2010 2004- 2012	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial GHG emissions (no clear definition)	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver- gence approa- ches Index decomposition analysis using the Kaya	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ twice that of other GHGs. The time eff negative for both industrial CO ₂ and c GHGs, but the former effect is stronge than the latter. Energy intensity and economic growth the main drivers of GHG per capita. C emissions per capita increased despite improved energy efficiency, among of the twick in the latter.
Kerimray et al., 2016 Sanchez and Stern, 2016 Streimikie ne and Balezentis , 2016	Kazakhsta n 129 countries Bulgaria, Estonia, Latvia, Lithuania, Luxem-	1990- 2010 (scena rios 2030) 1971- 2010 2004- 2012	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial GHG emissions (no clear definition)	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver- gence approa- ches Index decomposition analysis using the Kaya identity	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forn Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO2 and GHGs, but its effect on industrial CO2 twice that of other GHGs. The time eff negative for both industrial CO2 and c GHGs, but the former effect is strong than the latter. Energy intensity and economic growt the main drivers of GHG per capita. C emissions per capita increased despite improved energy efficiency, among o due to higher C intensity of energy.
Kerimray et al., 2016 Sanchez and Stern, 2016 Streimikie ne and Balezentis , 2016	Kazakhsta n 129 countries Bulgaria, Estonia, Latvia, Lithuania, Luxem- bourg	1990- 2010 (scena rios 2030) 1971- 2010 2004- 2012	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial GHG emissions (no clear definition)	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver- gence approa- ches Index decomposition analysis using the Kaya identity	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ twice that of other GHGs. The time eff negative for both industrial CO ₂ and of GHGs, but the former effect is stronger than the latter. Energy intensity and economic growth the main drivers of GHG per capita. Consistence emissions per capita increased despite improved energy efficiency, among of due to higher C intensity of energy.
Kerimray et al., 2016 Sanchez and Stern, 2016 Streimikie ne and Balezentis , 2016	Kazakhsta n 129 countries Bulgaria, Estonia, Latvia, Lithuania, Luxem- bourg	1990- 2010 (scena rios 2030) 1971- 2010 2004- 2012	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial GHG emissions (no clear definition)	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver- gence approa- ches Index decomposition analysis using the Kaya identity	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ twice that of other GHGs. The time eff negative for both industrial CO ₂ and c GHGs, but the former effect is stronger than the latter. Energy intensity and economic growth the main drivers of GHG per capita. C emissions per capita increased despite improved energy efficiency, among of due to higher C intensity of energy.
Kerimray et al., 2016 Sanchez and Stern, 2016 Streimikie ne and Balezentis , 2016	Kazakhsta n 129 countries Bulgaria, Estonia, Latvia, Lithuania, Luxem- bourg	1990- 2010 (scena rios 2030) 1971- 2010 2004- 2012	Terri- torial Terri- torial	GHG emissions (UNF- CCC), Total primary energy supply CO ₂ from fossil fuel & cement; non- industrial GHG emissions (no clear definition)	Data analysis for past tra- jectories, MARKAL for future scenarios Nested stati- stical model combining EKC, IPAT and conver- gence approa- ches Index decomposition analysis using the Kaya identity	correlated with relative decoupling. Main focus of the paper are future scenarios. Analysis of data for 1990-2 mainly focused on the crisis caused by breakdown of communism in the Forr Soviet Union. GHG intensity of GDP from 3.4kg/\$ to 2.0kg/\$ No support for EKC hypothesis. GDP growth drives both industrial CO ₂ and GHGs, but its effect on industrial CO ₂ twice that of other GHGs. The time eff negative for both industrial CO ₂ and c GHGs, but the former effect is stronge than the latter. Energy intensity and economic growth the main drivers of GHG per capita. C emissions per capita increased despite improved energy efficiency, among of due to higher C intensity of energy.

2
3
1
4
5
6
7
o Q
0
9
10
11
12
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
24
25
26
27
28
20
29
30
31
22
22
33
34
35
36
20
37
38
39
40
40
41
42
43
44
15
45
46
47
48
40
49
50
51
52
52
22
54
55
56
57
5/
58
59

3 4 5 6 7	Valadkha ni et al., 2016	45 coun- tries	2002, 2007, 2011	Territo- rial	Primary energy, CO ₂ , CH ₄ and N ₂ O	Multiplicative environmental data envelopment analysis (ME- DEA)	Efficiency scores rise over time for most countries. There is a positive relation between energy efficiency and economic efficiency. Abundant natural and energy resources result in inefficient use.
8 9 10	Bampatso u et al., 2017	EU (11 countries)	1990- 2011	Territo- rial	GHG emissions	Data envelopment analysis	Relative decoupling in some countries, absolute decoupling in others.
11 12 13 14 15	Beltran- Esteve and Picazo- Tadeo, 2017	EU	2000- 2014	Territo- rial	GHG emissions	Data Envelopment Analysis	Provides efficiency rankings; emphasizes the role of technological innovation, and catch-up in technology adoption in East Europe for reducing GHG emissions.
16 17 18 19	Drasticho va, 2017	EU-15	2000- 2013	Territo- rial	GHG	Decompositio n with Log- Mean Divisia Index	Absolute decoupling, as GHG intensity reduced faster than increase of economic activity (scale)
20 21 22	Fernandez -Amador et al., 2017	Global	1997- 2011	Territori al and Foot- print	CO ₂	Threshold models	Finds no support for EKC with up-to-date database. Income elasticity of production- based emissions was ~0.6; of consumption- based emissions ~0.8
23 24 25	Liobikien e et al., 2017	Lithuania, EU-27	2000- 2012	Territo- rial	GHG	Elasticity coefficient methods	Relative decoupling in Lithuania; absolute decouling in EU-27 in some sectors
26 27 28	M1 et al., 2017	China	2005- 2012	Territo- rial and Foot- print	CO ₂ emissions	Structural decomposition analysis	No decoupling; in different years varied contributions of emissions growth from consumption, production, etc.
29 30 31 32 33	Khan et al., 2017	36 countries	2001- 2014	Territo- rial	GHG emissions	Granger causality	Investigates multi-causalities also with trade and urbanization; finds that GHG emissions are positively influenced by financial development, urbanization, trade openness and energy consumption.
34 35 36 37	Shuai et al., 2017	Global	1960- 2011	Territo- rial	GHG emissions	Panel analysis of EKC hypothesis for all countries worldwide	Predicts that the global economy will reach its turning point around 2050 and will absolutely decouple thereafter
38 39 40 41	Simas et al., 2017	Global	2007	Territo- rial and Foot- print	GHG emissions	EXIOBASE	Decoupling found for production-based emissions, not for consumption-based emissions
42 43 44	Yang et al., 2017	Russia	1998- 2013	Territo- rial	GHG	Fitting detailed emissions data with EKC	Predicts an EKC-turning point for Russia in about 2027; absolute decoupling from thereon.
45 46 47	Zaman et al., 2017	Sub- Saharan Africa	2000-2014	Terri-	GHG GHG	Panel random effect	EKC confirmed for CH4; emphasis on relevance of food sector. Absolute decoupling observed
48 49 50	2019	countries, specificall y Poland	2015	torial	emissions	trend analysis, Pearson correlation	
51 52 53 54 55	Cohen et al., 2018	20 largest emitters	1990- 2014	Territo- rial and footprint	GHG emissions	Estimation of trends elasticity, Hodrick- Prescott filter	Absolute decoupling in European countries, not in emerging economies; absolute decoupling weaker but still existent from consumption perspective; renewable policies support decoupling.
56 57 58 59	Bader and Ganguli, 2019	Gulf coopera- tion council countries	1980- 2006	Territo- rial	GHG emissions	Granger causality and other statistical tests	Mostly lack of EKC in gulf states; reduced fossil fuel consumption recommended to improve health. Oil rentier states may work categorically different than other countries [interpretation added].
60	Bampatso u and	G7 coun- tries	1993- 2016	Territo- rial	GHG emissions 2	Non- parametric 3	Calculate elasticities of GDP to changes in various variables, including GHG

Halkos, 2019				(not clearly specified)	Data Envelopment Analysis	emissions, and evaluate trends in efficiencies.
Cohen et al., 2019	China	1950- 2012	Terri- torial and Foot- print	GHG emissions	Descriptive trend analysis	Kuznet elasticity 0.6 for production-based emissions, a bit lower for consumption- based emissions. Emissions in China result partially from being a pollution haven; long-term trend indicates potential for absolute decoupling.
Fanning and O'Neill, 2019	120 coun- tries	2005- 2015	Foot- print	GHG emissions	Descriptive data analysis	Decoupling insufficient; either decouple more strongly, or decouple happiness from consumption.
Leal et al., 2019	Australia	1990- 2015	Terri- torial	Sectoral GHG emissions from national inventory	LDMI decomposition , decoupling and efficiency indices	GHG emissions decrease and increase throughout the period in waves while GDP grows. At the end of the period, GHG are slightly lower than in the start year (absolute decoupling), largely explained by reduced emissions in agriculture.
Le Quéré et al., 2019	79 countries	2005- 2014/ 15	Terri- torial, footprint	CO ₂	Spearman's rank, LMDI	18 countries show absolute decoupling of industrial CO ₂ and GDP in both territorial and footprint accounts (see text).
Liu et al., 2019	40 coun- tries	1995- 2009	Foot- print	GHG emissions excl. LULUCF	WIOD and structural decomposition analysis	Rising consumption generally drives up emissions, while reductions of emissions intensities somewhat counteract that trend (relative decoupling). Finds rising volumes of GHG "embodied" in products exported from developing countries.
Palm et al., 2019	Sweden	2008- 2014	Foot- print	Fossil-fuel CO ₂ , CH ₄ , N ₂ O, F- gases	Hybrid MRIO, descriptive trend analysis	Absolute decoupling: consumption-based GHG emissions decreased in absolute terms, mainly due to reduced emission intensities of households, while consumption-based value added increased.
Sarkodie et al., 2019	Australia	1970- 2017	Terri- torial	GHG emissions (World Bank)	Autoregressi- ve Distributed Lag simulations	Finds an inverse U-shaped relationship between energy use and GDP and declining GHG intensity of GDP.
Wang et al., 2019	China, G20	2000- 2014	Terri- torial	GHG emissions	Hybrid Malm- quist-Luen- berger index, meta-frontier technique	Efficiency increase larger in BRICS countries than in G20 advanced group.

4. Strategies for decoupling – green growth versus degrowth

In order to elucidate the perspective on economic growth adopted in empirical decoupling studies, we assessed a random sub-sample of 15% of the 835 articles in terms of their political or strategic assumptions and/or conclusions, as visible in their introduction and conclusions sections respectively the policy-recommendations given (if available). Due to the search query, this body of literature contained only quantitative, empirical studies of decoupling and excluded qualitative policy analyses. Hence almost none of the 125 selected articles focused primarily on strategies or policies for a zero-carbon society and the strategic conclusions or policy recommendations drawn from the quantitative analyses are often rather formulaic. 31% of the articles mentioned no strategies or policy recommendations at all, while 69% provided policy recommendations or strategic conclusions in varying detail.

With regard to their overall framing and aims, 64% of the analyzed articles followed a green growth perspective, that is, they aimed at analyzing absolute or relative decoupling in a given period and territory, and provided policy recommendations in this direction. In line with the literature, a green growth perspective is mainly concerned with "making growth processes resource-efficient" (Hallegatte, 2011, p.2) and "stimulating demand for green technologies, goods, and services" (OECD, 2011, p.5), but presents economic growth (measured as increase

of GDP) as a set variable. Interestingly, this framing was also common in articles that did not

find empirical evidence for absolute decoupling, implying that these studies at least implicitly

valued continuation of GDP growth higher than achieving set environmental goals. Only 3% of

the articles adopted a *degrowth* perspective and were open to question the primacy of economic

growth. These "degrowth" studies usually did not explicitly argue in favor of reducing GDP

growth; they rather questioned to what extent it would be possible to sustain GDP growth when

aiming to reduce resource use or emissions and might hence be classified as "growth agnostic",

i.e. a-growth (van den Bergh and Kallis, 2012). A striking number of one third of the analyzed

literature was concerned only with the correlation or causality between energy or resource use

and economic growth without explicitly addressing the challenge of decoupling or

decarbonization. Policy recommendation in this literature, if at all given, follow a standard

green growth repertoire. Some studies which found that growth in energy use Granger-causes

GDP growth even argued that saving energy should be viewed cautiously as a policy goal, as it

Figure 1 summarizes the strategies and policy recommendations given in the articles according

to their frequency. Most interestingly, although many articles conclude that absolute

decoupling is empirically rarely found, the recommendations to a large extent stick to a green

growth repertoire of increasing efficiency, promoting renewable energy and introducing

could threaten GDP growth (Belloumi and Alshehry, 2015; Yu, 2012).

- technological solutions and market-based mechanisms (e.g., internalizing or increasing environmental costs through pricing, attract foreign direct investments, financialization or emission trading). Many articles furthermore call for a restructuring of the economy that turns from fossil-energy intensive industrial production towards the service sector. The figure also shows that policy recommendations hardly contain any "demand-side measures" (not even environmental awareness). Absolute reductions of resource use and emissions (as opposed to relative improvements) are mentioned in < 2 % of the subsample. behavioral change nental awareness low carbon fossil energy stakeholder involvement demand side measures Low carbon urbanization financial incentives energy demand control liberalization FDI public transport industrial policy curb affluence economic change environmental policy foreign trade innovation community based tourism thresholds caps ading public policy advanced-coal technology environmental regulation low-carbon fossil fuels population control marketization R&D energy saving reduce consumption low-carbon urbanization D infrastructure improvement technology economic structure 584 Figure 1. Strategies and policy recommendations visualized according to their frequency (own compilation). The analysis shows that the large majority of this literature does not question the GDP growth paradigm, even if the empirical evidence suggests that it contradicts officially committed climate policy goals. Policy recommendations point towards a standard repertoire (i.e., efficiency, technology, innovation) that is not further discussed or questioned. Given the focus

of the review on studies that quantitatively analyze the relationship between resource use, emissions and economic growth, a less substantive focus on political strategies is not necessarily surprising. However, the separation of quantitative decoupling analyses and more qualitative investigations into the political barriers and potentials towards zero-carbon futures or reduction of energy and materials use may present a problem in itself because it prevents discussion of more effective and realistic strategies based on empirical analyses.

5. Discussion and conclusions

At least since the publication of the seminal "Limits to growth" report (Meadows et al., 1972), a debate is ongoing between scholars who hold that unlimited economic growth is impossible on a finite planet, and other scholars who believe that human ingenuity will eventually overcome all potential limitations to economic growth. The emergence of the notion of "sustainable development" has suggested that economic development and respect for planetary boundaries (Steffen et al., 2015), to use a modern word, can be reconciled. Claims that a decoupling of GDP from resource use and environmental pressures would be possible were already formulated very early on (United Nations, 1987).

To contribute to this debate, we deliberately designed this pair of review articles broadly, as we aimed to incorporate a variety of indicators to comprehensively assess the use of biophysical resources (materials and energy) as well as a key class of outflows, namely GHG emissions (Jackson and Victor, 2019). GHG emissions are dominated by CO₂, i.e. the compound resulting from the combustion of most fuels that humans currently use, and hence a quantitatively dominant outflow of all dissipative use of materials (as opposed to stock-building materials such as concrete or steel; Krausmann et al., 2018). This focus on social metabolism in its entirety (Haberl et al., 2019) has shown that different patterns can be discerned by focusing on different aspects of resource use, and that the perspectives and results of communities looking at various aspects of resource use differ considerably.

5.1 Synthesis of insights into past decoupling

The large body of literature focused on the causal interrelations between energy and GDP uses econometric time-series and causality testing methods, for example Granger causality, but often shows little interest in the energy indicators analyzed or in actual thermodynamic basis of their hypotheses (see part I, Wiedenhofer et al., this issue). While no robust conclusion can be drawn on the direction of causality, these studies show that energy and GDP are strongly related. Stern (2011) has argued that energy is an important factor of production, hence energy scarcity imposes restrictions on economic growth, which supports results from biophysical economics (Kümmel, 2011). We found no evidence in the reviewed literature that would question this assertion.

The second group of articles (section 3.2) pays a lot of attention to the meaning of the energy indicators used. Many of the authors in this community come from energy analysis and regard themselves as analysts of "biophysical economics" (Cleveland, 1987; Hall et al., 2001; Kümmel, 2011). Their conviction is that energy use is a key factor of production (Ayres, 2016), and that the quality of energy is hence crucial for assessing the role of energy in the economy (Giampietro, 2006; Haberl, 2006; Hall et al., 1986). The main conclusions are that useful exergy and GDP are tightly coupled and that at the useful stage of energy use there is no evidence for relative decoupling. However, this does not mean that decoupling is not possible between primary energy and GDP, which is important because GHG emissions and extraction of energy resources are linked to primary energy, not useful exergy (Haberl, 2006). The conclusion from this literature is that primary energy use can be decoupled from GDP only to the extent to which conversion efficiency from primary energy to useful exergy can be increased.

The review of social metabolism studies based on MEFA methods (Fischer-Kowalski et al., 2011; Haberl et al., 2004; Krausmann et al., 2017a) exemplifies the richness of measures of resource use and their different specific meanings (section 3.3). This community is well aware of the importance of a rich set of indicators, in particular of the difference between production-based and consumption-based accounts. This literature suggests that production-based relative decoupling is frequent, although countries exist in which use of physical resources grows faster than GDP. This seems to happen especially at early stages of the agrarian-industrial transition when large stocks of infrastructures and buildings are accumulated, as well as in export-oriented countries where production of raw materials and early processing stages are dominant. Absolute decoupling is rare and generally only occurs during periods of low GDP growth (Steinberger et al., 2013). At the global level, only relative decoupling can be observed (Krausmann et al., 2017b). In recent years several global multi-regional input-output models have been established which allow allocating extracted primary resources to final demand of any economy (Inomata and Owen, 2014; Wiedmann and Lenzen, 2018). Consumption-based analyses suggest that decoupling of production-based material flows is often contrasted by increases of material footprints that are similar to those of GDP (Giljum et al., 2014a; Pothen and Schymura, 2015; Thomas O. Wiedmann et al., 2015b).

- Current trajectories of material and energy use, whether suggesting decoupling of resource use from economic growth or not, cannot be correctly interpreted without considering past material and energy flows on which they are also based. Current stagnation in per capita territorial/production-based resource use (Bleischwitz et al., 2018a; Fishman et al., 2016), for example, depends on past material flows (Mayer et al., 2017) and entail a substantial legacy for the future (Krausmann et al., 2017c). Since some materials enter the socio-economic system to be consumed for their energy content while others are for building up stock (manufactured capital) (Haas et al., 2015), it may well be that different strategies are needed to observe, analyse, and set targets for decoupling material use of these two streams. Therefore, more insights can be expected by moving from studies of the decoupling of GDP from one resource or emission indicator to analysing interdependencies between GDP and multiple resources flows, respectively material stocks and resource or emission flows (Haberl et al., 2017; Krausmann et al., 2017c).
- In recent years, a hypothesized S-shaped curve of material growth suggesting a notion of "saturation", i.e. a stable level of materials use, has gained prominence. In the MEFA community, the idea of saturation has recently attracted more attention than the EKC. This would imply sustenance of a stable, perhaps high, level of materials use coinciding with a continued growth of GDP and perhaps other socioeconomic indicators, in accordance with the "steady state economy" discourse (Daly, 1973; O'Neill, 2015). However, so far, no consensus could be achieved on many important conceptual questions. It remains unclear whether saturation should be defined as country totals or per capita, whether consumption- or production-based flows (or material stocks) should be stabilized, and whether saturation should be achieved at the same level for all countries (Bleischwitz et al., 2018a; Cao et al., 2017; Chen and Graedel, 2015; Fishman et al., 2016; Müller et al., 2011; Pauliuk et al., 2013). Moreover, stabilization at a high level may fall short of achieving many sustainability and climate targets.
- The literature on CO₂ and other GHG emissions is large and growing fast (Wiedenhofer et al.,
 this issue). Most of the studies on territorial CO₂ use econometric methods, and many are based
 on the EKC framework (section 3.1). Empirical support for the existence of an EKC-type
 inverted U-shape of the relation between CO₂ emissions and GDP is seldom found (Sarkodie
 and Strezov, 2019). This also holds for total GHG emissions (section 3.4). Even when the data

seem to suggest such a curve, the downward-bent part of the curve is usually too far in the future to be of use in reaching ambitious climate targets such as the Paris accord. The GHG emission literature reviewed in section 3.4 suggests a similar pattern as for material use: relative decoupling is the norm rather the exception, but cases of absolute decoupling are rare. A recent study, however, has identified and analyzed 18 "peak-and-decline" countries in which CO2 emissions are falling in both territorial and consumption-based system boundaries (Le Quéré et al., 2019). The study concludes that emissions in these 18 countries fell by a median -2.4%/yr (25-75 percentile: -1.4 to -2.9%/yr) over the period 2005-2015. Almost half of that reduction has been due to a decline in the share of fossil fuels in final energy use. A bit over one-third resulted from reductions of energy use. The study provides evidence that these reductions were a result of targeted policies to promote renewables and raise energy efficiency, but also profited from relatively low GDP growth rates between 1-2%/yr, which is similar to decoupling rates observed in MEFA studies (Steinberger et al., 2013). It also noted that rates of CO₂ reduction achieved so far fell short from those required to comply with stringent CO₂ reduction targets as those implied by the Paris climate accord.

708 5.2 Current state of decoupling in the last decade

Because the analysis of the literature has yielded only limited aggregate insight into elasticities between GDP and resource/emission indicators due to the variety of measures used in the literature to describe (de)coupling, we summarize some information on the last decade in Figure 2. Elasticities were calculated as OLS log regressions over 10 years using the formula $\log(\text{resource/emission}) = \alpha + \beta \log(\text{GDP}) + \varepsilon$. A median elasticity of CO₂ of 0.4 in the higher income class (top panels in Fig. 2) means that for 1% of GDP growth, production-based CO₂ emissions grew by 0.4%. Elasticities below zero indicate absolute decoupling and elasticities >1 that resources/emissions grew faster than GDP. Results should be interpreted with caution in particular for those parts of Figure 2 where data were only available for few countries (see sample sizes in blue font color). Median values of elasticities are close to one for most of the indicators in the low-income class, while they are often substantially lower than one for the higher income class. For the higher income class, elasticities of consumption-based (CB) indicators are highest for material use and substantially lower for CO₂ and GHG. For the lower income class, the highest median values are found for production-based emissions. Negative elasticities, indicating absolute decoupling, are most frequent for production-based GHG emission accounts and consumption-based TPES and CO₂ accounts for high income countries. For other indicators, instances of absolute decoupling also exist in the group of high-income countries, but are very rare for lower income countries. Thus, the results from our regression analysis over a 10-year timeframe are largely consistent with the main findings from our literature review.

731 Figure 2. Resource and emission elasticities of GDP in two classes of higher income and lower income countries in the last 10 years. Box plots show medians, quartiles and ranges of elasticities (% change in resource use or emissions per % change in real GDP). Sample sizes are given at the top of the graphs in blue and median values in green font color. Production-based (PB) and consumption-based (CB) figures are shown separately. "Lower income" refers to the "low" and "lower middle" income categories of the World Bank (2019b) classification; "higher income" is the sum of "upper middle" and "high" incomes. Data were extracted on November 19, 2019 from the following sources: Domestic material consumption (Material PB) & material footprint (Material CB) from UNE IRP (2019) material flow database for 2004-2013. Total primary energy supply (TPES PB) & Total final energy consumption (TFC PB) from IEA (2019) energy balances for 2008-2017. Territorial CO₂ emissions from fossil fuels and industrial processes (CO2 PB) from the Global Carbon Budget 2018 (Le Quéré et al., 2018) for 2008-2017. CO₂ footprint from fossil fuel combustion (CO₂ CB) from Wood et al. (2019b) for 2007-2016. Total territorial greenhouse gases with LULUCF in CO2eq (GHG PB) from UNFCCC (2019) for 2008-2017; Total GHG footprint except LULUCF (GHG CB) & TPES footprint (TPES CB) & TFC footprint (TFC CB) from Exiobase 3 (Wood et al., 2018b) for 2003-2012; GDP (constant 2010 US\$) from UN national accounts (2019).

46 745 47 746

5.3 Implications for future decoupling research and policies

What, then, are the conclusions for the prospects to achieve absolute decoupling in the future? The analyzed literature provides ample evidence that a continuation of past trends will not yield absolute reductions of resource use or GHG emissions. So far, environment and climate policies have at best achieved relative decoupling between GDP and resource use respectively GHG emissions (Haberl et al., 2019; Kemp-Benedict, 2018). Exceptions include a group of 18 countries that have reduced CO₂ emissions in the last decade (Le Quéré et al., 2019), and a few national cases, most of which are due to specific circumstances that probably should not be generalized (e.g., when falling resource use stems from economic crises; Shao et al., 2017). This observed absolute decoupling, however, falls short from the massive decoupling required to achieve agreed climate targets (Jackson and Victor, 2016). Of course, rare occurrence of absolute decoupling in the past does not represent proof that it cannot become more common

in the future – and perhaps intensifying the policies implemented in 18 peak-and-decline countries could yield sufficient decoupling of GDP and GHG emissions to achieve climate targets. Even if rapid deployment of renewable energy could be achieved, however, the world's addiction to material resources would likely not wane, as harnessing renewables also requires substantial investments into large-scale buildings (e.g. hydropower plants), machinery (e.g. wind turbines, photovoltaic power plants) and infrastructures (e.g. expansion and reinforcement of electric transmission grids; Beylot et al., 2019; Watari et al., 2019).

In any case, meeting the goals of the Paris Agreement will require new and more effective policies than those deployed so far. These need to be based on absolute - not relative - reduction goals for GHG emissions, which could strongly benefit from curbing growth of resource use (Krausmann et al., 2020). The IPCC 1.5°C report (IPCC, 2018) shows that even if high hopes are placed in future deployment of negative emission technologies, fast and deep cuts in global GHG emissions are required in order to address the 2.0°C target agreed upon in the Paris climate accord, and even more so for reaching 1.5°C. Currently, targets for reducing resource use or emissions are commonly framed as improvements of e.g. energy/GDP ratios. For example, SDG 7.3 aims at doubling the rate of energy intensity (energy/GDP) reduction, from approx. -1.5%/year to -3.0%/year. However, such targets allow substantial increases of resource use in absolute numbers if GDP growth is sufficiently fast (Heun and Brockway, 2019). Hence, absolute GHG reduction goals can only be achieved if absolute goals for emission reductions are agreed upon. The analysis of policies and strategies (section 4) shows that decoupling research is so far poorly equipped to deal with this challenge. Only a tiny fraction of the decoupling literature in our random sample adopted a "degrowth" perspective, which we have defined very broadly as a worldview allowing to question the priority of GDP growth over environmental goals. Whether one follows the viewpoint that a decoupling of GDP from environmental impacts is impossible (Hickel and Kallis, 2019; Ward et al., 2016) may be less important than accepting the need to achieve absolute reductions of emissions regardless of GDP trajectories. Similar considerations apply to the use of many other biophysical resources (Green and Denniss, 2018; Lazarus and van Asselt, 2018).

A recent review suggest that strategies towards efficiency have to be complemented by those pushing sufficiency (Parrique et al., 2019), that is, "the direct downscaling of economic production in many sectors and parallel reduction of consumption" (p. 3). Although concrete political strategies towards sufficiency – or degrowth – are still fragmented and diverse, they may include restrictive supply-side policy instruments targeting fossil fuels (instead of relative efficiency improvements), redistribution (of work and leisure, natural resources and wealth), a decentralization of the economy or new social security institutions (that complement the growth-oriented welfare state). Recently suggested policies include moratoria on resource extraction and new infrastructures (e.g. coal power plants, highways, airports), bans on harmful activities (e.g. fracking, coal mining), the reduction of working hours and redistributive taxation, instead of just putting a price on resources and emissions (Green and Denniss, 2018; Hickel and Kallis, 2019; Jackson, 2016; Kallis, 2011; Koch, 2013; Schneider et al., 2010; Sekulova et al., 2013). A new study suggests, however, that even energy sufficiency actions may be associated with rebound effects and negative spillovers (Sorrell et al., 2020).

In any case, recent research suggests that states have so far refrained from strategies of sufficiency as these may contradict their claimed structural dependence on economic growth for the generation of tax revenue, employment and consumption-based political legitimacy. A strategic turn towards sufficiency that involves reductions in overall consumption levels and may lead to a degrowing economy might therefore pose a fundamental challenge to contemporary states - and liberal democracies (Hausknost, 2019; Koch, 2019; Pichler et al.,

2018). Studies in sustainable consumption increasingly argue that a decisive turn towards

"strong sustainable consumption governance" (Lorek and Fuchs, 2013), that is, a clear focus on

reducing the volume of the materials and energy resources consumed while maintaining levels

of well-being, will be a key required for deep decarbonization.

Another recent strand of literature is focused on overcoming GDP as key target indicator of economic policy (Hoekstra, 2019). This debate suggests that GDP may be becoming an increasingly irrelevant measure of welfare, as it was only loosely coupled with wellbeing in OECD countries over the last 40 years (Hoekstra, 2019). In this view, GDP should be replaced or at least complemented by measures of wellbeing and planetary health, as suggested in the dashboard approach of the Sen-Stiglitz-Fitoussi-report (Stiglitz et al., 2009), and in the Sustainable Development Goals. Scholars increasingly focus more on improving social wellbeing rather than GDP growth. One conceptual angle is the "stock-flow-service" nexus approach (Haberl et al., 2019, 2017) suggesting that designing currently resource-intensive systems to provide for key contributions to social wellbeing (e.g. access/transport, housing/shelter, provision of food) in a resource-sparing manner in the first place can deliver these services at much lower levels of resource inputs than now. An example would be spatial patterns of settlements and work places that minimize the need for commuting, and foster commuting by environmentally friendly means such as walking, cycling or use of public transit. Such a focus on demand-side measures consistent with provision of services that are vital for social well-being is at the core of a currently emerging research community (Brand-Correa and Steinberger, 2017; Carmona et al., 2017; Creutzig et al., 2018, 2016; Cullen et al., 2011; Lamb and Steinberger, 2017; Vita et al., 2018). Perhaps the question to what extent GDP can be decoupled from resource use or emissions will turn out to be less important than the question how a good life for all on the planet can be organized within the planet's environmental limits (O'Neill et al., 2018). Reductions in resource use and emissions commensurate with climate and sustainability goals (IPCC, 2018; TWI2050, 2018) may still be achieved by turning towards sufficiency and other transformative strategies.

Acknowledgements: This research has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT STOCKS, grant agreement No 741950) and the Austrian Science Funds (FWF, grant MISO P27590). Paul Brockway was funded by the UK Research Council under EPSRC Fellowship award EP/R024254/1. Anke Schaffartzik acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the "María de Maeztu" program for Units of Excellence (MDM-2015-0552). We gratefully acknowledge help in managing references by research assistants Andrea Gutson, Lisa Laßnig, Vivianne Rau, Anna Unterstei-ner, by Nicolas Roux for calculation of elasticities in Fig 2, and the constructive comments of two anonymous reviewers.

Data availability statement

Any data that support the findings of this study are included within the article.

- References
- Aghion, P., Howitt, P., 2009. The Economics of Growth. The MIT Press.
- Ang, B.W., Liu, N., 2006. A cross-country analysis of aggregate energy and carbon intensities. Energy Policy 34, 2398-2404. https://doi.org/10.1016/j.enpol.2005.04.007 Angelis-Dimakis, A., Arampatzis, G., Assimacopoulos, D., 2012. Monitoring the sustainability of the Greek energy system. ENERGY Sustain. Dev. 16, 51-56. https://doi.org/10.1016/j.esd.2011.10.003

2		
3	859	Antonakakis, N., Chatziantoniou, I., Filis, G., 2017. Energy consumption, CO2 emissions,
4	860	and economic growth An ethical dilemma. Renew. Sustain, Energy Rev. 17.
5	861	Arango-Miranda R Hausler R Romero-Lonez R Glaus M Ibarra-Zavaleta S P 2018
6	862	Carbon Dioxide Emissions Energy Consumption and Economic Growth: A
7	863	Comparative Empirical Study of Selected Developed and Developing Countries "The
8	00 <i>5</i> 0 <i>6</i> 4	Dela of Everen "ENERCIES 11 https://doi.org/10.2200/cm11102669
9 10	804 865	Arte L Distantes Les E 2014 Drivers of the Court in Clobal Court Artes Car
10	803	Arto, I., Dietzenbacher, E., 2014. Drivers of the Growth in Global Greenhouse Gas
12	866	Emissions. Environ. Sci. Technol. 48, 5388–5394. https://doi.org/10.1021/es500534/
13	867	Ayres, R., 2016. Energy, Complexity and Wealth Maximization, The Frontiers Collection.
14	868	Springer International Publishing, Cham. https://doi.org/10.100//9/8-3-319-30545-5
15	869	Ayres, R.U., Ayres, L.W., Warr, B., 2003. Exergy, power and work in the US economy, 1900
16	870	– 1998. Energy 28, 219–273. https://doi.org/10.1016/S0360-5442(02)00089-0
17	871	Ayres, R.U., Warr, B., 2009. The Economic Growth Engine: How Energy And Work Drive
18	872	Material Prosperity. Edward Elgar, Cheltenham, UK ; Northampton, MA.
19	873	Azam, M., Khan, A.Q., 2016. Testing the Environmental Kuznets Curve hypothesis: A
20	874	comparative empirical study for low, lower middle, upper middle and high income
21	875	countries. Renew. Sustain. Energy Rev. 63, 556–567.
22	876	https://doi.org/10.1016/j.rser.2016.05.052
23	877	Bader, Y., Ganguli, S., 2019. Analysis of the association between economic growth.
25	878	environmental quality and health standards in the Gulf Cooperation Council during
26	879	1980-2012 Manag Environ Qual Int I 30 1050-1071
27	880	https://doi.org/10.1108/MEO-03-2018-0061
28	881	Bajocchi G. Miny I.C. 2010 Understanding Changes in the UK's CO a Emissions: A
29	001	Clobal Derepactive Environ Sci Technol 44 1177 1184
30	002	bitter: $\frac{1}{100}$ bitter: $\frac{1000}{1000}$
31	003	Rups://doi.org/10.1021/es9020020
32	884	Bampatsou, C., Halkos, G., 2019. Economic growth, efficiency and environmental elasticity
33 24	885	for the G7 countries. Energy Policy 130, 355–360.
35	886	https://doi.org/10.1016/j.enpol.2019.04.01/
36	887	Bampatsou, C., Halkos, G., Dimou, A., 2017. Determining economic productivity under
37	888	environmental and resource pressures: an empirical application. J. Econ. Struct. 6, 12.
38	889	https://doi.org/10.1186/s40008-017-0071-1
39	890	Bassetti, T., Benos, N., Karagiannis, S., 2013. CO2 Emissions and Income Dynamics: What
40	891	Does the Global Evidence Tell Us? Environ. Resour. Econ. 54, 101–125.
41	892	https://doi.org/10.1007/s10640-012-9583-1
42	893	Beaudreau, B.C., 2010. On the methodology of energy-GDP Granger causality tests. Energy
43	894	35, 3535–3539. https://doi.org/10.1016/j.energy.2010.03.062
44 45	895	Behrens, A., Giljum, S., Kovanda, J., Niza, S., 2007. The material basis of the global
45 46	896	economy: Worldwide patterns of natural resource extraction and their implications for
47	897	sustainable resource use policies. Ecol. Econ., Special Section - Ecosystem Services
48	898	and Agriculture Ecosystem Services and Agriculture 64, 444–453.
49	899	https://doi.org/10.1016/j.ecolecon.2007.02.034
50	900	Belke A Dobnik F Dreger C 2011 Energy consumption and economic growth: New
51	901	insights into the cointegration relationship. Energy Econ &
52	901 902	Belloumi M. Alshebry A.S. 2015 Sustainable Energy Development in Saudi Arabia
53	002	SUSTAINA DI ITV 7 5152 5170 https://doi.org/10.2200/gu7055152
54	903	Poltron Estava M. Diagra Tadas, A. L. 2017, Assagging anvironmental performance in the
22 56	904 005	Expression Union: Ecology votion votion stabling we ENER CV DOLLOV 104, 240
50 57	905	European Union: Econnovation versus catching-up. ENERGY POLICY 104, 240–
58	906	252. https://doi.org/10.1016/j.enpoi.201/.01.054
59	907	Bernardini, O., Galli, R., 1993. Dematerialization: Long-term trends in the intensity of use of
60	908	materials and energy. Futures 25, 431–448. https://doi.org/10.1016/0016-
	909	3287(93)90005-Е
		22

910	Beylot, A., Guyonnet, D., Muller, S., Vaxelaire, S., Villeneuve, J., 2019. Mineral raw material
911	requirements and associated climate-change impacts of the French energy transition
912	by 2050. J. Clean. Prod. 208, 1198–1205.
913	https://doi.org/10.1016/i.jclepro.2018.10.154
914	Bithas, K., Kalimeris, P., 2018, Unmasking decoupling: Redefining the Resource Intensity of
915	the Economy Sci TOTAL Environ 619 338–351
916	https://doi.org/10.1016/i.scitoteny.2017.11.061
917	Rithas K Kalimeris P 2017 The Material Intensity of Growth: Implications from the
918	Human Scale of Production Soc. Indic Res 133 1011–1029
919	https://doi.org/10.1007/s11205-016-1401-7
020	Bleischwitz R Nechifor V Winning M Huang B Geng V 2018a Extrapolation or
021	saturation Revisiting growth patterns, development stages and decoupling. Glob
021	Environ Change 48, 86, 96, https://doi.org/10.1016/j.gloenycha.2017.11.008
922	Dischwitz B. Spatery C. VanDavaer S.D. Oberateiner M. van der Vast F. Jahrson C.
925	Andrews Snood D. Doorsmon T. Hoff H. von Vyymon D.D. 2018b. Descumes news
924	Andrews-Speed, P., Boersina, I., Holl, H., Van Vuuren, D.P., 20180. Resource nexus
923	Sector 1, 727, 742, https://doi.org/10.1028/c41802.018.0172.2
926	Sustain. 1, $\frac{3}{-43}$. https://doi.org/10.1038/s41893-018-01/3-2
927	Borozan, D., 2018. Technical and total factor energy efficiency of European regions: A two-
928	stage approach. Energy 152, 521–532. https://doi.org/10.1016/j.energy.2018.03.159
929	Brand-Correa, L.I., Steinberger, J.K., 2017. A Framework for Decoupling Human Need
930	Satisfaction From Energy Use. Ecol. Econ. 141, 43–52.
931	https://doi.org/10.1016/j.ecolecon.2017.05.019
932	Bringezu, S., Schütz, H., Moll, S., 2003. Rationale for and Interpretation of Economy-Wide
933	Materials Flow Analysis and Derived Indicators. J. Ind. Ecol. 7, 43–64.
934	https://doi.org/10.1162/108819803322564343
935	Bringezu, S., Schütz, H., Steger, S., Baudisch, J., 2004. International comparison of resource
936	use and its relation to economic growth: The development of total material
937	requirement, direct material inputs and hidden flows and the structure of TMR. Ecol.
938	Econ. 51, 97–124. https://doi.org/10.1016/j.ecolecon.2004.04.010
939	Bruns, S., Gross, C., Stern, D.I., 2013. Is There Really Granger Causality between Energy
940	Use and Output? Crawford Sch. Res. Pap. 13–07.
941	http://dx.doi.org/10.2139/ssrn.2232455
942	Canas, A., Ferrao, P., Conceicao, P., 2003. A new environmental Kuznets curve? Relationship
943	between direct material input and income per capita: evidence from industrialised
944	countries. Ecol. Econ. 46, 217–229. https://doi.org/10.1016/S0921-8009(03)00123-X
945	Cañellas, S., González, A.C., Puig, I., Russi, D., Sendra, C., Sojo, A., 2004. Material flow
946	accounting of Spain. Int. J. Glob. Environ. Issues 4, 229–241.
947	https://doi.org/10.1504/IJGENVI.2004.006052
948	Cao, Z., Shen, L., Løvik, A.N., Müller, D.B., Liu, G., 2017. Elaborating the History of Our
949	Cementing Societies: An in-Use Stock Perspective. Environ. Sci. Technol. 51, 11468–
950	11475. https://doi.org/10.1021/acs.est.7b03077
951	Carmona, L., Whiting, K., Carrasco, A., Sousa, T., Domingos, T., 2017. Material Services
952	with Both Eves Wide Open. Sustainability 9, 1508, https://doi.org/10.3390/su9091508
953	Chen, J., Wang, P., Cui, L., Huang, S., Song, M., 2018, Decomposition and decoupling
954	analysis of CO2 emissions in OECD. Appl. Energy 231, 937–950.
955	https://doi.org/10.1016/i.apenergy.2018.09.179
956	Chen W-O Graedel T.F. 2015 In-use product stocks link manufactured capital to natural
957	capital Proc Natl Acad Sci 112 6265-6270
958	https://doi.org/10.1073/pnas.1406866112
150	https://doi.org/10.10/5/phus.1400000112
	33
	910 911 912 913 914 915 916 917 918 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 941 942 943 944 945 946 947 948 949 950 951 952 953 955 956 957 958

2		
3	959	Chien, T., Hu, JL., 2007. Renewable energy and macroeconomic efficiency of OECD and
4	960	non-OECD economies. Energy Policy 35, 3606–3615.
5	961	https://doi.org/10.1016/i.enpol.2006.12.033
6	962	Chiu A S F Dong L Geng Y Rapera C Tan E 2017 Philippine resource efficiency in
/	963	Asian context: Status, trends and driving forces of Philippine material flows from
8	967	1080 to 2008 I Clean Prod 153 63 73
9 10	065	https://doi.org/10.1016/j.jelepre.2017.02.158
11	905	Citalia Conzelez Mertinez A. Schendl H. 2009. The biophysical percentative of a middle
12	900	income concentry Material flows in Maxima Each Each 68, 217, 227
13	90/	income economy: Material flows in Mexico. Ecol. Econ. 08 , $517-527$.
14	968	https://doi.org/10.1016/j.ecolecon.2008.03.013
15	969	Cleveland, C.J., 1987. Biophysical economics: historical perspective and current research
16	9/0	trends. Ecol. Model. 38 , $4/-/3$.
17	971	Cleveland, C.J., Ruth, M., 1998. Indicators of Dematerialization and the Materials Intensity of
18	972	Use. J. Ind. Ecol. 2, 15–50. https://doi.org/10.1162/jiec.1998.2.3.15
20	973	Cohen, G., Jalles, J.T., Loungani, P., Marto, R., 2018. The long-run decoupling of emissions
20	974	and output: Evidence from the largest emitters. ENERGY POLICY 118, 58–68.
22	975	https://doi.org/10.1016/j.enpol.2018.03.028
23	976	Cohen, G., Jalles, J.T., Loungani, P., Marto, R., Wang, G., 2019. Decoupling of emissions
24	977	and GDP: Evidence from aggregate and provincial Chinese data. ENERGY Econ. 77,
25	978	105–118. https://doi.org/10.1016/j.eneco.2018.03.030
26	979	Creutzig, F., Fernandez, B., Haberl, H., Khosla, R., Mulugetta, Y., Seto, K.C., 2016. Beyond
27	980	Technology: Demand-Side Solutions for Climate Change Mitigation. Annu. Rev.
28	981	Environ. Resour. 41, 173–198. https://doi.org/10.1146/annurev-environ-110615-
29	982	085428
31	983	Creutzig, F., Roy, J., Lamb, W.F., Azevedo, I.M.L., Bruine de Bruin, W., Dalkmann, H.,
32	984	Edelenbosch, O.Y., Geels, F.W., Grubler, A., Hepburn, C., Hertwich, E.G., Khosla,
33	985	R., Mattauch, L., Minx, J.C., Ramakrishnan, A., Rao, N.D., Steinberger, J.K., Tavoni,
34	986	M., Ürge-Vorsatz, D., Weber, E.U., 2018 Towards demand-side solutions for
35	987	mitigating climate change. Nat. Clim. Change 8, 260–263
36	988	https://doi.org/10.1038/s41558-018-0121-1
37	989	Cruz I Dias I 2016 Energy and CO2 intensity changes in the EU-27: Decomposition into
38	000	evaluation evaluation of the state of the st
39 40	001	1000000000000000000000000000000000000
40 41	991	Culler IM Allwood IM Derectoin EH 2011 Reducing Energy Demand: What Are the
42	992	Duratical Lineita? Environ Soi Tashnal 45, 1711, 1719
43	993	Fractical Limits? Environ. Sci. Technol. 43, 1/11-1/18.
44	994	nttps://doi.org/10.1021/es102641n
45	995	Cunha, J., Nunes, M.L., Lima, F., 2018. Discerning the factors explaining the change in
46	996	energy efficiency. Environ. Dev. Sustain. 20, 163–179.
47	997	https://doi.org/10.100//s10668-018-0148-5
48	998	Daly, H.E., 1973. Toward a Steady-State Economy. W.H. Freeman, San Francisco.
49 50	999	De Bruyn, S.M., Opschoor, J.B., 1997. Developments in the throughput-income relationship:
50	1000	Theoretical and empirical observations. Ecol. Econ. 20, 255–268.
52	1001	https://doi.org/10.1016/S0921-8009(96)00086-9
53	1002	De Marco, O., Lagioia, G., Mazzacane, E.P., 2000. Materials flow analysis of the Italian
54	1003	economy. J. Ind. Ecol. 4, 55–70. https://doi.org/10.1162/108819800569807
55	1004	Domingos, T., Zafrilla, J.E., López, L.A., 2016. Consistency of technology-adjusted
56	1005	consumption-based accounting. Nat. Clim. Change 6, 729–730.
57	1006	https://doi.org/10.1038/nclimate3059
58	1007	Drastichova, M., 2017. Decomposition Analysis of the Greenhouse Gas Emissions in the
59 60	1008	European Union. Probl. EKOROZWOJU 12, 27–35.
00		
		24
		54

2		
3	1009	Duarte, R., Mainar, A., Sánchez-Chóliz, J., 2013. The role of consumption patterns, demand
4	1010	and technological factors on the recent evolution of CO2 emissions in a group of
5	1011	advanced economies. Ecol. Econ. 96, 1–13.
6 7	1012	https://doi.org/10.1016/i.ecolecon.2013.09.007
/ 8	1013	Duro, I.A., Alcántara, V., Padilla, E., 2010. International inequality in energy intensity levels
9	1014	and the role of production composition and energy efficiency. An analysis of OECD
10	1015	countries Ecol Econ 69 2468–2474 https://doi.org/10.1016/j.ecolecon.2010.07.022
11	1015	Enders W 2014 Applied Econometric Time Series 4th Edition 4th ed Wiley
12	1010	Eachn T Bruvoll A 2000 Richer and cleaner-At others' expense? Resour ENERGY From
13	1017	21 102 122 https://doi.org/10.1016/j.rosonooco.2008.11.001
14	1010	For L L How V D. Worg O. Worg C. Wai V M. 2016 Europering the characteristics
15	1019	ran, JL., Hou, YB., wang, Q., wang, C., wei, YM., 2010. Exploring the characteristics
16	1020	of production-based and consumption-based carbon emissions of major economies: A
1/ 10	1021	multiple-dimension comparison. Appl. ENERGY 184, $790-799$.
10	1022	https://doi.org/10.1016/j.apenergy.2016.06.076
20	1023	Fang, Y., 2011. Economic welfare impacts from renewable energy consumption: The China
21	1024	experience. Renew. Sustain. Energy Rev. 15, 5120–5128.
22	1025	https://doi.org/10.1016/j.rser.2011.07.044
23	1026	Fanning, A.L., O'Neill, D.W., 2019. The Wellbeing-Consumption paradox: Happiness,
24	1027	health, income, and carbon emissions in growing versus non-growing economies. J.
25	1028	Clean. Prod. 212, 810–821. https://doi.org/10.1016/j.jclepro.2018.11.223
26	1029	Fernandez-Amador, O., Francois, J.F., Oberdabernig, D.A., Tomberger, P., 2017. Carbon
27	1030	Dioxide Emissions and Economic Growth: An Assessment Based CrossMark on
20 29	1031	Production and Consumption Emission Inventories. Ecol. Econ. 135, 269–279.
30	1032	https://doi.org/10.1016/j.ecolecon.2017.01.004
31	1033	Fernández-Herrero, L., Duro, J.A., 2019. What causes inequality in Material Productivity
32	1034	between countries? Ecol. Econ. 162, 1–16.
33	1035	https://doi.org/10.1016/j.ecolecon.2019.04.007
34	1036	Fischer-Kowalski, M., 1998. Society's metabolism: The intellectual history of material flow
35	1037	analysis, Part I: 1860-1970. J. Ind. Ecol. 2, 61–78.
30 37	1038	https://doi.org/10.1162/jiec.1998.2.1.61
38	1039	Fischer-Kowalski, M., Krausmann, F., Giljum, S., Lutter, S., Mayer, A., Bringezu, S.,
39	1040	Moriguchi, Y., Schütz, H., Schandl, H., Weisz, H., 2011. Methodology and Indicators
40	1041	of Economy-wide Material Flow Accounting: State of the Art and Reliability Across
41	1042	Sources. J. Ind. Ecol. 15, 855–876. https://doi.org/10.1111/j.1530-9290.2011.00366.x
42	1043	Fishman, T., Schandl, H., Tanikawa, H., 2016. Stochastic Analysis and Forecasts of the
43	1044	Patterns of Speed, Acceleration, and Levels of Material Stock Accumulation in
44	1045	Society, Environ, Sci. Technol, 50, 3729–3737.
45 46	1046	https://doi.org/10.1021/acs.est.5b05790
40 47	1047	Fishman, T., Schandl, H., Tanikawa, H., Walker, P., Krausmann, F., 2014, Accounting for the
48	1048	Material Stock of Nations: Accounting for the Material Stock of Nations. J. Ind. Ecol.
49	1049	18 407–420 https://doi.org/10.1111/jjec.12114
50	1050	Fuss S Canadell I.G. Peters G.P. Tavoni M. Andrew R.M. Ciais P. Jackson R.B.
51	1050	Iones CD Krayner F Nakicenovic N Le Quéré C Raunach MR Sharifi A
52	1051	Smith P Vamagata V 2014 Betting on negative emissions Nat Clim Change 4
53	1052	850 853 https://doi.org/10.1038/nclimate/3302
54 55	1053	Fuse S. Lamb W.F. Callaghan M.W. Hilaire I. Creutzig F. Amann T. Beringer T. de
56	1055	Olivoire Gereie W. Hertmann, I. Khenne, T. Luderer, G. Nomet, G.F. Bogeli, J.
57	1055	Smith D. Vicente II. V. Wilcov I. dol Mar Zamora Dominguoz M. Miny I.C.
58	1050	2018 Nogetive emissions – Dert 2: Costa notentials and side effects. Environ Des
59	1057	Lott 12 062002 https://doi.org/10.1088/1748.0226/aakf0f
60	1038	Lou. 15, 005002. https://doi.org/10.1000/1/40-9520/ad0191
		35

3	1059	Gan, Y., Zhang, T., Liang, S., Zhao, Z., Li, N., 2013. How to Deal with Resource Productivity
4	1060	Relationships Between Socioeconomic Factors and Resource Productivity. J. Ind.
5	1061	Ecol. 17, 440–451. https://doi.org/10.1111/j.1530-9290.2012.00547.x
6 7	1062	Gazheli, A., van den Bergh, J., Antal, M., 2016. How realistic is green growth? Sectoral-level
7 8	1063	carbon intensity versus productivity. J. Clean. Prod. 129, 449–467.
9	1064	https://doi.org/10.1016/i.jclepro.2016.04.032
10	1065	Giampietro, M., 2006, Comments on "The Energetic Metabolism of the European Union and
11	1066	the United States" by Haberl and Colleagues: Theoretical and Practical Considerations
12	1067	on the Meaning and Usefulness of Traditional Energy Analysis, J. Ind. Ecol. 10, 173–
13	1068	185. https://doi.org/10.1162/ijec.2006.10.4.173
14	1069	Gierlinger S Krausmann F 2012 The Physical Economy of the United States of America
15	1070	L Ind. Ecol. 16, $365-377$, https://doi.org/10.1111/i.1530-9290.2011.00404 x
17	1071	Gilium, S., Bruckner, M., Martinez, A., 2014a, Material Footprint Assessment in a Global
18	1072	Input-Output Framework, J. Ind. Ecol. 19, 792–804, https://doi.org/10.1/11/jiec.12214
19	1073	Gilium, S., Dittrich, M., Lieber, M., Lutter, S., 2014b, Global Patterns of Material Flows and
20	1074	their Socio-Economic and Environmental Implications: A MFA Study on All
21	1075	Countries World-Wide from 1980 to 2009 Resources 3 319–339
22	1075	https://doi.org/10.3390/resources3010319
23 24	1070	Grand M.C. 2016 Carbon emission targets and decounling indicators Ecol Indic 67 649–
25	1078	656 https://doi.org/10.1016/i ecolind 2016.03.042
26	1079	Granger C W I 1969 Investigating Causal Relations by Econometric Models and Cross-
27	1080	spectral Methods. Econometrica 37, 424–438, https://doi.org/10.2307/1912791
28	1081	Green, F., Denniss, R., 2018. Cutting with both arms of the scissors: the economic and
29	1082	political case for restrictive supply-side climate policies. Clim. Change 150, 73–87.
30 21	1083	https://doi.org/10.1007/s10584-018-2162-x
32	1084	Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., Miteva, D.A.,
33	1085	Schlesinger WH Shoch D Sijkamäki IV Smith P Woodbury P Zganiar C
34	1086	Blackman, A., Campari, J., Conant, R.T., Delgado, C., Elias, P., Gopalakrishna, T.,
35	1087	Hamsik, M.R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S.M.,
36	1088	Minnemeyer, S., Polasky, S., Potapov, P., Putz, F.E., Sanderman, J., Silvius, M.,
3/	1089	Wollenberg E Fargione I 2017 Natural climate solutions Proc Natl Acad Sci
20 20	1090	114. 11645–11650. https://doi.org/10.1073/pnas.1710465114
40	1091	Grubler, A., Wilson, C., Bento, N., Boza-Kiss, B., Krey, V., McCollum, D.L., Rao, N.D.,
41	1092	Riahi, K., Rogeli, L., Stercke, S., Cullen, L., Frank, S., Fricko, O., Guo, F., Gidden, M.,
42	1093	Havlík, P., Huppmann, D., Kiesewetter, G., Rafai, P., Schoepp, W., Valin, H., 2018, A
43	1094	low energy demand scenario for meeting the 1.5 °C target and sustainable
44	1095	development goals without negative emission technologies Nat. Energy 3, 515
45	1096	https://doi.org/10.1038/s41560-018-0172-6
40 47	1097	Guevara, Z., Sousa, T., Domingos, T., 2016. Insights on Energy Transitions in Mexico from
48	1098	the Analysis of Useful Exergy 1971-2009. ENERGIES 9.
49	1099	https://doi.org/10.3390/en9070488
50	1100	Guillet, R., 2010, ENERGY AND ECONOMICAL GROWTH: OVERVIEW AND
51	1101	GLOBAL CHALLENGES, Environ, Eng. Manag, J. 9, 1357–1362.
52	1102	Gupta, S. 2015. Decoupling: a step toward sustainable development with reference to OECD
53 54	1103	countries. Int. J. Sustain, Dev. WORLD Ecol. 22, 510–519.
55	1104	https://doi.org/10.1080/13504509.2015.1088485
56	1105	Haas, R., Nakicenovic, N., Ajanovic, A., Faber, T., Kranzl, L., Müller, A., Resch, G., 2008.
57	1106	Towards sustainability of energy systems: A primer on how to apply the concept of
58	1107	energy services to identify necessary trends and policies. Energy Policy 36, 4012–
59	1108	4021. https://doi.org/10.1016/j.enpol.2008.06.028
00		
		26
		00

1		
2	4400	
3 ⊿	1109	Haas, W., Krausmann, F., Wiedenhofer, D., Heinz, M., 2015. How Circular is the Global
5	1110	Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the
6	1111	European Union and the World in 2005. J. Ind. Ecol. 19, 765–777.
7	1112	https://doi.org/10.1111/jiec.12244
8	1113	Haberl, H., 2006. On the Utility of Counting Joules: Reply to Comments by Mario
9	1114	Giampietro. J. Ind. Ecol. 10, 187–192. https://doi.org/10.1162/jiec.2006.10.4.187
10	1115	Haberl, H., 2001. The Energetic Metabolism of Societies Part I: Accounting Concepts. J. Ind.
11	1116	Ecol. 5, 11–33. https://doi.org/10.1162/108819801753358481
12	1117	Haberl, H., Fischer-Kowalski, M., Krausmann, F., Weisz, H., Winiwarter, V., 2004. Progress
14	1118	towards sustainability? What the conceptual framework of material and energy flow
15	1119	accounting (MEFA) can offer. Land Use Policy 21, 199–213.
16	1120	https://doi.org/16/j.landusepol.2003.10.013
17	1121	Haberl, H., Steinberger, J.K., Plutzar, C., Erb, KH., Gaube, V., Gingrich, S., Krausmann, F.,
18	1122	2012. Natural and socioeconomic determinants of the embodied human appropriation
19	1123	of net primary production and its relation to other resource use indicators. Ecol. Indic.
20	1124	23, 222–231. https://doi.org/10.1016/j.ecolind.2012.03.027
21 22	1125	Haberl, H., Wiedenhofer, D., Erb, KH., Görg, C., Krausmann, F., 2017. The Material Stock-
22	1126	Flow–Service Nexus: A New Approach for Tackling the Decoupling Conundrum.
24	1127	Sustainability 9, 1049. https://doi.org/10.3390/su9071049
25	1128	Haberl, H., Wiedenhofer, D., Pauliuk, S., Krausmann, F., Müller, D.B., Fischer-Kowalski, M.,
26	1129	2019. Contributions of sociometabolic research to sustainability science. Nat. Sustain.
27	1130	2, 173–184. https://doi.org/10.1038/s41893-019-0225-2
28	1131	Hall, C., Lindenberger, D., Kümmel, R., Kroeger, T., Eichhorn, W., 2001. The Need to
29	1132	Reintegrate the Natural Sciences with Economics. BioScience 51, 663–673.
30	1133	https://doi.org/10.1641/0006-3568(2001)051[0663:TNTRTN]2.0.CO;2
32	1134	Hall, C.A.S., Cleveland, C.J., Kaufmann, R., 1986, Energy and resource quality: the ecology
33	1135	of the economic process. John Wiley & Sons, New York, NY.
34	1136	Hallegatte, S.H., Geoffrey Fay, Marianne Treguer, David, 2011, From Growth to Green
35	1137	Growth-A Framework, Policy Research Working Papers, The World Bank,
36	1138	https://doi.org/10.1596/1813-9450-5872
3/ 20	1139	Hardt, L., Owen, A., Brockway, P., Heun, M.K., Barrett, J., Taylor, P.G., Foxon, T.J., 2018.
20 20	1140	Untangling the drivers of energy reduction in the UK productive sectors: Efficiency or
40	1141	offshoring? Appl. Energy 223, 124–133.
41	1142	https://doi.org/10.1016/j.apenergy.2018.03.127
42	1143	Hashimoto, S., Matsui, S., Matsuno, Y., Nansai, K., Murakami, S., Moriguchi, Y., 2008.
43	1144	What Factors Have Changed Japanese Resource Productivity ? J. Ind. Ecol. 12, 657–
44	1145	668. https://doi.org/10.1111/j.1530-9290.2008.00072.x
45 46	1146	Hausknost, D., 2019. The environmental state and the glass ceiling of transformation.
40 47	1147	Environ. Polit. 1–21. https://doi.org/10.1080/09644016.2019.1680062
48	1148	Hertwich, E.G., Peters, G.P., 2009, Carbon Footprint of Nations: A Global, Trade-Linked
49	1149	Analysis Environ Sci Technol 43 6414–6420 https://doi.org/10.1021/es803496a
50	1150	Heun MK Brockway PE 2019 Meeting 2030 primary energy and economic growth
51	1150	goals: Mission impossible? Appl Energy 251 112697
52	1152	https://doi.org/10.1016/j.apenergy 2019.01.255
53	1152	Hickel J Kallis G 2019 Is Green Growth Possible? New Polit Econ 1–18
54 55	1155	https://doi.org/10.1080/13563467.2019.1598964
56	1154	Hoekstra R 2019 Replacing GDP by 2030 Towards a Common Language for the Well-
57	1156	heing and Sustainability Community Cambride University Press Cambridge UK
58	1157	Hoffrén I Hellman I 2007 Impacts of increasing consumption on material flows over
59	1157	time: Empirical results from Finland 1970-2005 Prog. Ind. Fool 4, 463-483
60	1159	https://doi.org/10.1504/PIF.2007.016354
	1137	- https://doi.org/10.100///1112.200/101050/

2		
3	1160	Hoffrén, J., Luukkanen, J., Kaivo-oja, J., 2001. Decomposition analysis of Finnish material
4	1161	flows: 1960-1996. J. Ind. Ecol. 4, 105–125.
5	1162	https://doi.org/10.1162/10881980052541972
6	1163	Hu, JL., Kao, CH., 2007. Efficient energy-saving targets for APEC economies. Energy
/ 0	1164	Policy 35 373–382 https://doi.org/10.1016/i.enpol.2005.11.032
9	1165	IFA 2019 World Energy Balances [WWW Document] Int Energy Agency LIRI
10	1166	https://www.jea.org/statistics/balances/ (accessed 11 19 19)
11	1167	IFIAS 1974 Energy analysis workshop on methodology and conventions. International
12	1168	Federation of Institutes for Advanced Study (IEIAS) Stockholm
13	1160	Infante Amete I Soto D. Aquilera F. García Ruiz P. Guzmán G. Cid A. González de
14	1170	Molina M 2015 The Spanish Transition to Industrial Metabolism: Long Term
15	1170	Material Flow Analysis (1860-2010): The Spanish Transition to Industrial
10	1171	Matchai Flow Analysis (1000-2010). The Spanish Hanstlon to industrial
18	1172	Inomata S Owen A 2014 COMPARATIVE EVALUATION OF MRIO DATABASES
19	1173	Econ Syst Bes 26 230 244 https://doi.org/10.1080/00535314.2014.040856
20	1175	Intergovernmental Panal on Climate Change Edenhofer, O. (Eds.) 2014. Climate change
21	1175	2014: mitigation of alimate change: Working Group III contribution to the Fifth
22	1170	Assessment Report of the Intergovernmental Repol on Climate Change, Combridge
23	11//	Assessment Report of the Intergovernmental Panel on Chinate Change. Camoridge
24 25	11/0	University Fress, New York, NY.
25	11/9	http://www.inco.ch/www.t/m15/
27	1100	http://www.ipcc.cn/report/sr15/
28	1101	Jackson, 1., 2010. Prosperity without growth: foundations for the economy of tomorrow.
29	1182	Roulledge.
30	1103	Jackson, I., victor, P.A., 2019. Unraveling the claims for (and against) green growth. Science
31	1184	300, 950-951.
32 22	1185	Jackson, I., Victor, P.A., 2016. Does slow growth lead to rising inequality? Some theoretical
33	1180	https://loi org/10.1016/j.org/10.2015/02.010
35	110/	$\frac{1}{1000} = \frac{1}{1000} = 1$
36	1188	Jadnao, S.B., Pandit, A.B., Baksni, B.R., 2017. The evolving metabolism of a developing
37	1189	economy: India's exergy flows over four decades. Appl. ENERGY 206, 851–857.
38	1190	https://doi.org/10.1016/j.apenergy.2017.08.240
39	1191	Jakob, M., Haller, M., Marschinski, R., 2012. Will history repeat itself? Economic
40	1192	convergence and convergence in energy use patterns. Energy Econ. 34, 95–104.
41 42	1193	https://doi.org/10.1016/j.eneco.2011.07.008
43	1194	Jakob, M., Marschinski, R., 2013. Interpreting trade-related CO2 emission transfers. Nat.
44	1195	Clim. Change 3, 19–23. https://doi.org/10.1038/nclimate1630
45	1196	Jesus Lopez-Menendez, A., Perez, R., Moreno, B., 2014. Environmental costs and renewable
46	1197	energy: Re-visiting the Environmental Kuznets Curve. J. Environ. Manage. 145, 368–
47	1198	3/3. https://doi.org/10.1016/j.jenvman.2014.0/.017
48	1199	Jiborn, M., Kander, A., Kulionis, V., Nielsen, H., Moran, D.D., 2018. Decoupling or
49 50	1200	delusion? Measuring emissions displacement in foreign trade. Glob. Environ. Change
51	1201	49, 27–34. https://doi.org/10.1016/j.gloenvcha.2017.12.006
52	1202	Kalimeris, P., Richardson, C., Bithas, K., 2014. A meta-analysis investigation of the direction
53	1203	of the energy-GDP causal relationship: implications for the growth-degrowth
54	1204	dialogue. J. Clean. Prod. 67, 1–13. https://doi.org/10.1016/j.jclepro.2013.12.040
55	1205	Kallis, G., 2017. Radical dematerialization and degrowth. Philos. Trans. R. SocMath. Phys.
56 57	1206	Eng. Sci. 375. https://doi.org/10.1098/rsta.2016.0383
57 58	1207	Kallis, G., 2011. In defence of degrowth. Ecol. Econ. 70, 873–880.
59	1208	Kalt, G., Wiedenhofer, D., Görg, C., Haberl, H., 2019. Conceptualizing energy services: A
60	1209	review of energy and well-being along the Energy Service Cascade. Energy Res. Soc.
	1210	Sc1. 53, 47–58. https://doi.org/10.1016/j.erss.2019.02.026

2		
3	1211	Kander, A., Jiborn, M., Moran, D.D., Wiedmann, T.O., 2015. National greenhouse-gas
4	1212	accounting for effective climate policy on international trade. Nat. Clim. Change 5,
5	1213	431–435. https://doi.org/10.1038/nclimate2555
0 7	1214	Karanfil, F., 2009. How many times again will we examine the energy-income nexus using a
7 8	1215	limited range of traditional econometric tools? Energy Policy 37, 1191–1194.
9	1216	https://doi.org/10.1016/i.enpol.2008.11.029
10	1217	Kelly, H.C., Blair, P.D., Gibbons, I.H., 1989. Energy Use and Productivity: Current Trends
11	1218	and Policy Implications, Annu, Rev. Energy 14, 321–352.
12	1219	https://doi.org/10.1146/annurey.eg.14.110189.001541
13	121)	Kemp-Benedict F 2018 Dematerialization Decoupling and Productivity Change Fool
14	1220	Econ 150 204 216 https://doi.org/10.1016/j.ecolecon 2018.04.020
15	1221	Kerimray A Baigarin K De Miglio P Tosato G 2016 Climate change mitigation
10 17	1222	Reminary, A., Dargarin, K., De Wigno, K., 10sato, O., 2010. Chinate change initigation
12	1225	scenarios and policies and measures, the case of Kazakiistan. Chin. FOLIC 1 10, $332-$
19	1224	552. https://doi.org/10.1080/14095062.2014.1005525
20	1225	Knan, M.I.I., Yaseen, M.R., Ali, Q., 2017. Dynamic relationship between financial
21	1226	development, energy consumption, trade and greenhouse gas: Comparison of upper
22	1227	middle income countries from Asia, Europe, Africa and America. J. Clean. Prod. 161,
23	1228	567–580. https://doi.org/10.1016/j.jclepro.2017.05.129
24	1229	Kim, Y.H., 1984. Interactions among economic activity, energy use, and electricity use.
25	1230	Energy 9, 717–725.
26	1231	Knight, K.W., Schor, J.B., 2014. Economic Growth and Climate Change: A Cross-National
27	1232	Analysis of Territorial and Consumption-Based Carbon Emissions in High-Income
20 29	1233	Countries. SUSTAINABILITY 6, 3722–3731. https://doi.org/10.3390/su6063722
30	1234	Koch, M., 2019. The state in the transformation to a sustainable postgrowth economy.
31	1235	Environ. Polit. 1-19. https://doi.org/10.1080/09644016.2019.1684738
32	1236	Koch, M., 2013. Welfare after growth: theoretical discussion and policy implications. Int. J.
33	1237	Soc. Qual. 3, 4–20.
34	1238	Koirala, B.S., Li, H., Berrens, R.P., 2011. Further Investigation of Environmental Kuznets
35	1239	Curve Studies Using Meta-Analysis. Int. J. Ecol. Econ. Stat. 22, 13–32.
30 27	1240	Kovanda, J., Hak, T., 2011. Historical perspectives of material use in Czechoslovakia in
32	1241	1855-2007. Ecol. Indic. 11, 1375–1384. https://doi.org/10.1016/j.ecolind.2011.02.016
39	1242	Kovanda, J., Hak, T., 2008. Changes in Materials Use in Transition Economies. J. Ind. Ecol.
40	1243	12, 721–738, https://doi.org/10.1111/j.1530-9290.2008.00088.x
41	1244	Kovanda, J., Hak, T., 2007. What are the possibilities for graphical presentation of
42	1245	decoupling? An example of economy-wide material flow indicators in the Czech
43	1246	Republic Ecol Indic 7 123–132 https://doi.org/10.1016/j.ecolind.2005.11.002
44	1247	Kovanda I. Hak T. Janacek I. 2008 Economy-wide material flow indicators in the Czech
45	1247	Republic: Trends decoupling analysis and uncertainties. Int. J. Environ. Pollut. 35
40 47	1240	25_41 https://doi.org/10.1504/LIEP.2008.021129
47 48	124)	Kovanda I. Weinzettel I. Hak T. 2010. Material Flow Indicators in the Czech Republic in
49	1250	Light of the Accession to the European Union L Ind Ecol 14, 650, 665
50	1251	https://doi.org/10.1111/j.1520.0200.2010.00253 v.
51	1252	Krausmann E. Caugl D. West J. Schendl H. 2016. The motobalic transition of a glanged
52	1233	Krausmann, F., Gaugi, B., West, J., Schandi, H., 2010. The metadolic transition of a planned
53	1234	Economy: Waterial flows in the USSR and the Russian Federation 1900 to 2010. Ecol.
54	1255	Econ. 124, $76-85$. https://doi.org/10.1016/j.ecolecon.2015.12.011
55	1256	Krausmann, F., Gingrich, S., Elsenmenger, N., Erb, KH., Haberl, H., Fischer-Kowalski, M.,
50 57	1257	2009. Growth in global materials use, GDP and population during the 20th century.
58	1258	Ecol. Econ. 68, 2696–2705. https://doi.org/10.1016/j.ecolecon.2009.05.007
59	1259	Krausmann, F., Gingrich, S., Nourbakhch-Sabet, R., 2011. The Metabolic Transition in Japan.
60	1260	J. Ind. Ecol. 15, 877–892. https://doi.org/10.1111/j.1530-9290.2011.00376.x
		39

1		
2		
3	1261	Krausmann, F., Haberl, H., Erb, K., Wackernagel, M., 2004. Resource flows and land use in
4	1262	Austria 1950-2000: using the MEFA framework to monitor society-nature interaction
5	1263	for sustainability. LAND USE POLICY 21, 215–230.
7	1264	https://doi.org/10.1016/j.landusepol.2003.10.005
8	1265	Krausmann, F., Lauk, C., Haas, W., Wiedenhofer, D., 2018. From resource extraction to
9	1266	outflows of wastes and emissions: The socioeconomic metabolism of the global
10	1267	economy, 1900–2015. Glob. Environ. Change 52, 131–140.
11	1268	https://doi.org/10.1016/j.gloenvcha.2018.07.003
12	1269	Krausmann, F., Schandl, H., Eisenmenger, N., Giljum, S., Jackson, T., 2017a. Material Flow
13	1270	Accounting: Measuring Global Material Use for Sustainable Development. Annu.
14 15	1271	Rev. Environ. Resour. 42. https://doi.org/10.1146/annurev-environ-102016-060726
15 16	1272	Krausmann, F., Schandl, H., Eisenmenger, N., Gilium, S., Jackson, T., 2017b, Material Flow
17	1273	Accounting: Measuring Global Material Use for Sustainable Development Annu
18	1273	Rev Environ Resour 42 647–675
19	1275	Krausmann F. Wiedenhofer D. Haberl H. 2020 Growing stocks of buildings
20	1275	infrastructures and machinery as key challenge for compliance with climate targets
21	1270	Glob Environ Change 61, 102024, https://doi.org/10.1016/j.gloony.oha.2020.102024
22	1277	Krausmann E. Wiedenhofer D. Lauk C. Heas W. Tanikawa H. Fishman T. Mietto A
23	1270	Klausinanni, F., Wiedennolei, D., Lauk, C., Haas, W., Tanikawa, H., Tishinan, T., Wiano, A.,
24 25	12/9	schandl, H., Haberl, H., 2017C. Global socioeconomic material slocks rise 25-loid
25	1200	over the 20th century and require nam of annual resource use. Proc. Natl. Acad. Sci. U. $S = A = \frac{114}{12772} + \frac{1980}{12772} + \frac{1985}{12772} + \frac{1980}{12772} + \frac{1980}{127$
27	1281	5. A. 114, 1880–1885. https://doi.org/10.10/5/pnas.1015//5114 Könnel D. 2011. The Second Low of Fernancies. Environ Entremy and the Origins of
28	1282	Kummel, R., 2011. The Second Law of Economics, Energy, Entropy and the Origins of
29	1283	Wealth. Springer, New York.
30	1284	Lamb, W.F., Steinberger, J.K., 2017. Human well-being and climate change mitigation:
31	1285	Human well-being and climate change mitigation. Wiley Interdiscip. Rev. Clim.
32	1286	Change 8, e485. https://doi.org/10.1002/wcc.485
33 24	1287	Lazarus, M., van Asselt, H., 2018. Fossil fuel supply and climate policy: exploring the road
24 25	1288	less taken. Clim. Change 150, 1–13. https://doi.org/10.1007/s10584-018-2266-3
36	1289	Le Quéré, C., Andrew, R.M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A.C.,
37	1290	Korsbakken, J.I., Peters, G.P., Canadell, J.G., Jackson, R.B., Boden, T.A., Tans, P.P.,
38	1291	Andrews, O.D., Arora, V.K., Bakker, D.C.E., Barbero, L., Becker, M., Betts, R.A.,
39	1292	Bopp, L., Chevallier, F., Chini, L.P., Ciais, P., Cosca, C.E., Cross, J., Currie, K.,
40	1293	Gasser, T., Harris, I., Hauck, J., Haverd, V., Houghton, R.A., Hunt, C.W., Hurtt, G.,
41	1294	Ilyina, T., Jain, A.K., Kato, E., Kautz, M., Keeling, R.F., Klein Goldewijk, K.,
42	1295	Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lima, I.,
43 11	1296	Lombardozzi, D., Metzl, N., Millero, F., Monteiro, P.M.S., Munro, D.R., Nabel,
45	1297	J.E.M.S., Nakaoka, S., Nojiri, Y., Padin, X.A., Peregon, A., Pfeil, B., Pierrot, D.,
46	1298	Poulter, B., Rehder, G., Reimer, J., Rödenbeck, C., Schwinger, J., Séférian, R.,
47	1299	Skjelvan, I., Stocker, B.D., Tian, H., Tilbrook, B., Tubiello, F.N., van der Laan-
48	1300	Luijkx, I.T., van der Werf, G.R., van Heuven, S., Viovy, N., Vuichard, N., Walker,
49	1301	A.P., Watson, A.J., Wiltshire, A.J., Zaehle, S., Zhu, D., 2018. Global Carbon Budget
50	1302	2017. Earth Syst. Sci. Data 10, 405–448. https://doi.org/10.5194/essd-10-405-2018
51	1303	Le Quéré, C., Korsbakken, J.I., Wilson, C., Tosun, J., Andrew, R., Andres, R.J., Canadell,
52 53	1304	J.G., Jordan, A., Peters, G.P., van Vuuren, D.P., 2019. Drivers of declining CO2
54	1305	emissions in 18 developed economies. Nat. Clim. Change 9, 213–217.
55	1306	https://doi.org/10.1038/s41558-019-0419-7
56	1307	Leal, P.A., Margues, A.C., Fuinhas, J.A., 2019. Decoupling economic growth from GHG
57	1308	emissions: Decomposition analysis by sectoral factors for Australia. Econ. Anal.
58	1309	Policy 62, 12–26, https://doi.org/10.1016/i.ean.2018.11.003
59	1310	Lee, L-S., Kang, HY., Kim, K., Kwak, IH., Park, KH., Jo, HJ., An. S., 2014, A
60	1311	suggestion for Korean resource productivity management policy with calculating and
	1.511	Subbound for resource productivity management policy with calculating and

2		
3	1312	analyzing its national resource productivity. Resour. Conserv. Recycl. 91, 40–51.
4	1313	https://doi.org/10.1016/j.resconrec.2014.07.012
5	1314	Lenzen, M., Malik, A., Foran, B., 2016. Reply. J. Clean. Prod. 139, 796–798.
6 7	1315	https://doi.org/10.1016/j.jclepro.2016.08.037
7 8	1316	Lenzen, M., Moran, D., Kanemoto, K., Geschke, A., 2013. Building Eora: A Global Multi-
9	1317	Region Input–Output Database at High Country and Sector Resolution. Econ. Syst
10	1318	Res 25 20–49 https://doi.org/10.1080/09535314.2013.769938
11	1319	Li H Grijalva T Berrens R P 2007 Economic growth and environmental quality: a meta-
12	1320	analysis of environmental Kuznets curve studies Econ Bull 17 1–11
13	1320	Liang S. Ou S. Zhu Z. Guan D. Xu M. 2017 Income-Based Greenhouse Gas Emissions
14	1321	of Nations Environ Sci Technol 51 346 355
15	1322	https://doi org/10.1021/acs.est.6b02510
10	1323	Liang S Wang H Ou S Feng T Guan D Fang H Yu M 2016 Socioeconomic
17	1324	Drivers of Greenbouse Cos Emissions in the United States, Environ, Soi Technol 50
19	1323	7525. 7545 https://doi.org/10.1021/acg.est.6h00872
20	1320	1555 - 1545. https://doi.org/10.1021/acs.est.0000872
21	1327	Liddle, B., 2012. OECD energy intensity: Measures, trends, and convergence. Energy Effic.
22	1328	5, 583–597. https://doi.org/10.1007/s12053-012-9148-8
23	1329	Liobikiene, G., Butkus, M., Bernatoniene, J., 2016. Drivers of greenhouse gas emissions in
24	1330	the Baltic states: decomposition analysis related to the implementation of Europe 2020
25	1331	strategy. Renew. Sustain. ENERGY Rev. 54, 309–317.
20 27	1332	https://doi.org/10.1016/j.rser.2015.10.028
27	1333	Liobikiene, G., Mandravickaite, J., Krepstuliene, D., Bernatoniene, J., Savickas, A., 2017.
29	1334	LITHUANIAN ACHIEVEMENTS IN TERMS OF CO2 EMISSIONS BASED ON
30	1335	PRODUCTION SIDE IN THE CONTEXT OF THE EU-27. Technol. Econ. Dev.
31	1336	Econ. 23, 483–503. https://doi.org/10.3846/20294913.2015.1056278
32	1337	Liu, D., Guo, X., Xiao, B., 2019. What causes growth of global greenhouse gas emissions?
33	1338	Evidence from 40 countries. Sci. TOTAL Environ. 661, 750–766.
34	1339	https://doi.org/10.1016/j.scitotenv.2019.01.197
35 36	1340	Longhofer, W., Jorgenson, A., 2017. Decoupling reconsidered: Does world society integration
37	1341	influence the relationship between the environment and economic development? Soc.
38	1342	Sci. Res. 65, 17–29. https://doi.org/10.1016/j.ssresearch.2017.02.002
39	1343	Lorek, S., Fuchs, D., 2013. Strong sustainable consumption governance – precondition for a
40	1344	degrowth path? J. Clean. Prod. 38, 36–43.
41	1345	https://doi.org/10.1016/j.jclepro.2011.08.008
42	1346	Lovins, A.B., 1979. Soft Energy Paths: Towards A Durable Peace. Friends of the Earth
43	1347	International, San Francisco, Calif., Cambridge, Mass.
44 15	1348	Lozano, S., Gutiérrez, E., 2008. Non-parametric frontier approach to modelling the
46	1349	relationships among population, GDP, energy consumption and CO2 emissions. Ecol.
47	1350	Econ. 66, 687–699. https://doi.org/10.1016/j.ecolecon.2007.11.003
48	1351	Madaleno, M., Moutinho, V., 2018. Effects decomposition: separation of carbon emissions
49	1352	decoupling and decoupling effort in aggregated EU-15. Environ. Dev. Sustain. 20,
50	1353	181–198. https://doi.org/10.1007/s10668-018-0238-4
51	1354	Marcotullio, P.J., Schultz, N.B., 2007, Urbanization, increasing wealth, and energy
52	1355	transitions: comparing experiences between the USA. Japan and rapidly developing
53 54	1356	Asia Pacific economies (Working Paper 07-03), UGEC International Working Paper
55	1357	Series
56	1358	Marcotullio P.L. Schulz N.B. 2008 Urbanization Increasing Wealth and Energy
57	1359	Transitions: Comparing Experiences between the USA Japan and Ranidly Developing
58	1360	Asia-Pacific Economies in: Urban Energy Transit Elsevier pp. 55-80
59	1361	https://doi.org/10.1016/B978-0-02-045341-5.00003-7
60	1301	nups.//doi.org/10.1010/D//0-0-00-045541-5.00005-/
		41

 \checkmark

2		
3	1362	Margues, A., Rodrigues, J., Domingos, T., 2013. International trade and the geographical
4	1363	separation between income and enabled carbon emissions. Ecol. Econ. 89, 162–169.
5	1364	https://doi.org/10.1016/j.ecolecon.2013.02.020
6	1365	Margues A Rodrigues I Lenzen M Domingos T 2012 Income-based environmental
7	1365	responsibility Eggl Eggn The Eggnomics of Degrowth 84, 57, 65
8	1267	https://doi.org/10.1016/i.coolcoop.2012.00.010
9 10	130/	Martinica Davar M.F.C. Fishwar, T. Olyasha K. Tarihawa H. 2017 Matarial Flow
10	1308	Martinico-Perez, M.F.G., Fishman, T., Okuoka, K., Tanikawa, H., 2017. Material Flow
12	1309	Accounts and Driving Factors of Economic Growth in the Philippines: MFA and
13	13/0	Driving Factors in the Philippines. J. Ind. Ecol. 21, 1226–1236.
14	1371	https://doi.org/10.1111/jiec.12496
15	1372	Martinico-Perez, M.F.G., Schandl, H., Fishman, T., Tanikawa, H., 2018. The Socio-Economic
16	1373	Metabolism of an Emerging Economy: Monitoring Progress of Decoupling of
17	1374	Economic Growth and Environmental Pressures in the Philippines. Ecol. Econ. 147,
18	1375	155–166. https://doi.org/10.1016/j.ecolecon.2018.01.012
19	1376	Maung, K.N., Martinico-Perez, M.F.G., Komatsu, T., Mohammad, S., Murakami, S.,
20	1377	Tanikawa, H., 2015. Comparative studies on the driving factors of resource flows in
21	1378	Myanmar, the Philippines, and Bangladesh. Environ. Econ. Policy Stud. 17, 407–429.
22	1379	https://doi.org/10.1007/s10018-014-0087-9
23	1380	Mayer, A., Haas, W., Wiedenhofer, D., 2017, How Countries' Resource Use History Matters
25	1381	for Human Well-being – An Investigation of Global Patterns in Cumulative Material
26	1382	Flows from 1950 to 2010 Ecol Econ 134, 1, 10
27	1282	https://doi.org/10.1016/j.acologon.2016.11.017
28	1202	Mandaura D.H. Mandaura D.L. Dandaura I. Daharara W.W. 1072. The Limita To Crowth
29	1204	A Denset for the Cleber Dense's Design of the Denset of Manleigh University
30	1385	A Report for the Club of Rome's Project on the Predicament of Mankind. Universe
31	1386	Books, New York.
32	1387	Menegaki, A.N., 2011. Growth and renewable energy in Europe: A random effect model with
33	1388	evidence for neutrality hypothesis. Energy Econ. 33, 257–263.
34 25	1389	https://doi.org/10.1016/j.eneco.2010.10.004
32	1390	Meyer, M., Hirschnitz-Garbers, M., Distelkamp, M., 2018. Contemporary Resource Policy
37	1391	and Decoupling TrendsLessons Learnt from Integrated Model-Based Assessments.
38	1392	SUSTAINABILITY 10. https://doi.org/10.3390/su10061858
39	1393	Mi, Z., Wei, YM., Wang, B., Meng, J., Liu, Z., Shan, Y., Liu, J., Guan, D., 2017.
40	1394	Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030. J.
41	1395	Clean. Prod. 142, 2227–2236. https://doi.org/10.1016/j.jclepro.2016.11.055
42	1396	Minx, J.C., Lamb, W.F., Callaghan, M.W., Fuss, S., Hilaire, J., Creutzig, F., Amann, T.,
43	1397	Beringer, T., de Oliveira Garcia, W., Hartmann, J., Khanna, T., Lenzi, D., Luderer, G.,
44	1398	Nemet G F Rogeli I Smith P Vicente Vicente II Wilcox I del Mar Zamora
45	1390	Dominguez M 2018 Negative emissions—Part 1: Research landscape and synthesis
46 47	1/00	Environ Res Lett 13 063001 https://doi.org/10.1088/17/8-0326/aahf0h
47 78	1400	Moffatt I 2008 A proliminary analysis of composite indicators of systemathle development
40 49	1401	Int. I. Sustain Day WORLD East 15, 91, 97
50	1402	Int. J. Sustain. Dev. WORLD Ecol. 15, $81-87$.
51	1403	nttps://doi.org/10.1080/13504500809469//2
52	1404	Moreau, V., Neves, C.A.D.O., Vuille, F., 2019. Is decoupling a red herring? The role of
53	1405	structural effects and energy policies in Europe. Energy Policy 128, 243–252.
54	1406	https://doi.org/10.1016/j.enpol.2018.12.028
55	1407	Moreau, V., Vuille, F., 2018. Decoupling energy use and economic growth: Counter evidence
56	1408	from structural effects and embodied energy in trade. Appl. Energy 215, 54–62.
57	1409	https://doi.org/10.1016/j.apenergy.2018.01.044
58	1410	Mulder, P., de Groot, H.L.F., 2012. Structural change and convergence of energy intensity
59 60	1411	across OECD countries, 1970–2005. Energy Econ. 34, 1910–1921.
00	1412	https://doi.org/10.1016/j.eneco.2012.07.023
		12
		42

1		
2		
3	1413	Müller, D.B., Wang, T., Duval, B., 2011. Patterns of Iron Use in Societal Evolution §.
4 5	1414	Environ. Sci. Technol. 45, 182–188. https://doi.org/10.1021/es102273t
6	1415	Muñoz, P., Hubacek, K., 2008. Material implication of Chile's economic growth: Combining
7	1416	material flow accounting (MFA) and structural decomposition analysis (SDA). Ecol.
8	1417	Econ. 65, 136–144. https://doi.org/10.1016/j.ecolecon.2007.06.010
9	1418	Naqvi, A., Zwickl, K., 2017. Fifty shades of green: Revisiting decoupling by economic
10	1419	sectors and air pollutants. Ecol. Econ. 133, 111–126.
11	1420	https://doi.org/10.1016/j.ecolecon.2016.09.017
12	1421	Nemet, G.F., Callaghan, M.W., Creutzig, F., Fuss, S., Hartmann, J., Hilaire, J., Lamb, W.F.,
13	1422	Minx, J.C., Rogers, S., Smith, P., 2018. Negative emissions—Part 3: Innovation and
14 15	1423	upscaling. Environ. Res. Lett. 13, 063003. https://doi.org/10.1088/1748-9326/aabff4
16	1424	Nita, V., 2012. A Threefold Assessment of the Romanian Economy's Eco-Efficiency.
17	1425	Romanian J. Eur. Aff. 12, 59.
18	1426	OECD 2011 Towards green growth A summary for policy makers
19	1427	Omri A 2014 An international literature survey on energy-economic growth nexus:
20	1427	Fyidence from country-specific studies Renew Sustain Energy Rev 38 951_959
21	1420	https://doi.org/10.1016/i.rser.2014.07.084
22	1429	O'Naill D.W. 2015 What Should Ba Hald Standy in a Standy State Economy?: Interpreting
23	1430	Dalv's Definition at the National Level: What Should be Held Steady in a Steady
24 25	1431	State Economy? I Ind. Ecol. 10, 552, 562, https://doi.org/10.1111/jice.12224
25 26	1432	State Economy? J. Ind. Ecol. 19, $552-565$. https://doi.org/10.1111/jiec.12224
27	1433	U Neili, D. w., Fanning, A.L., Lamb, W.F., Steinberger, J.K., 2018. A good life for all within
28	1434	planetary boundaries. Nat. Sustain. 1, 88–95. https://doi.org/10.1038/s41893-018-
29	1435	
30	1436	Ozturk, I., 2010. A literature survey on energy–growth nexus. Energy Policy 38, 340–349.
31	1437	https://doi.org/10.1016/j.enpol.2009.09.024
32	1438	Palm, V., Wood, R., Berglund, M., Dawkins, E., Finnveden, G., Schmidt, S., Steinbach, N.,
33	1439	2019. Environmental pressures from Swedish consumption – A hybrid multi-regional
34 35	1440	input-output approach. J. Clean. Prod. 228, 634–644.
36	1441	https://doi.org/10.1016/j.jclepro.2019.04.181
37	1442	Parrique, T., Barth, J., Briens, F., Kerschner, C., Kraus-Polk, A., 2019. Decoupling
38	1443	Debunked. Evidence and arguments against green growth as a sole strategy for
39	1444	sustainability. European Environmental Bureau.
40	1445	Pauliuk, S., Hertwich, E.G., 2015. Socioeconomic metabolism as paradigm for studying the
41	1446	biophysical basis of human societies. Ecol. Econ. 119, 83–93.
42	1447	https://doi.org/10.1016/j.ecolecon.2015.08.012
43 44	1448	Pauliuk, S., Müller, D.B., 2014. The role of in-use stocks in the social metabolism and in
44 45	1449	climate change mitigation. Glob. Environ. Change 24, 132–142.
46	1450	https://doi.org/10.1016/j.gloenvcha.2013.11.006
47	1451	Pauliuk, S., Wang, T., Müller, D.B., 2013. Steel all over the world: Estimating in-use stocks
48	1452	of iron for 200 countries. Resour. Conserv. Recycl. 71, 22–30.
49	1453	https://doi.org/10.1016/j.resconrec.2012.11.008
50	1454	Peters, G.P., 2008. From production-based to consumption-based national emission
51	1455	inventories. Ecol. Econ. 65, 13–23. https://doi.org/10.1016/j.ecolecon.2007.10.014
52 52	1456	Peters, G.P., Hertwich, E.G., 2008. CO2 Embodied in International Trade with Implications
55 54	1457	for Global Climate Policy, Environ, Sci. Technol. 42, 1401–1407.
55	1458	https://doi.org/10.1021/es072023k
56	1459	Peters, G.P. Minx, I.C., Weber, C.L. Edenhofer, O. 2011 Growth in emission transfers via
57	1460	international trade from 1990 to 2008 Proc. Natl. Acad. Sci. 108, 8903–8908
58	1461	https://doi.org/10.1073/pnas.1006388108
59	1401	https://doi.org/10.10/5/phus.1000500100
60		
		43

3	1462	Pichler, M., Brand, U., Görg, C., 2018. The double materiality of democracy in capitalist
4	1463	societies: challenges for social-ecological transformations. Environ, Polit, 1–21.
5	1464	https://doi.org/10.1080/09644016.2018.1547260
6	1/65	Picton T Daniels P 1000 Ecological restructuring for sustainable development: evidence
7	1405	from the Australian accounty Each Econ 20, 405, 425
8	1400	1000000000000000000000000000000000000
9 10	140/	nttps://doi.org/10.1016/S0921-8009(98)00068-8
10	1468	Plank, B., Eisenmenger, N., Schaffartzik, A., Wiedenhofer, D., 2018a. International Irade
12	1469	Drives Global Resource Use: A Structural Decomposition Analysis of Raw Material
13	1470	Consumption from 1990–2010. Environ. Sci. Technol.
14	1471	https://doi.org/10.1021/acs.est.7b06133
15	1472	Plank, B., Eisenmenger, N., Schaffartzik, A., Wiedenhofer, D., 2018b. International Trade
16	1473	Drives Global Resource Use: A Structural Decomposition Analysis of Raw Material
17	1474	Consumption from 1990-2010. Environ. Sci. Technol. 52, 4190–4198.
18	1475	https://doi.org/10.1021/acs.est.7b06133
19	1476	Pothen, F., 2017. A structural decomposition of global Raw Material Consumption. Ecol.
20	1477	Econ. 141, 154–165, https://doi.org/10.1016/i.ecolecon.2017.05.032
21	1478	Pothen F. Schymura M. 2015 Bigger cakes with fewer ingredients? A comparison of
22	1479	material use of the world economy. Ecol. Econ. 109, 109–121
23	1/180	https://doi.org/10.1016/j.ecolecon.2014.10.000
24 25	1400	Paurova O. Komahara H. Coto N. 2014 Aggagement of physical accommy through
25	1401	Kaupova, O., Kainanara, H., Goto, N., 2014. Assessment of physical economy unough
27	1482	economy-wide material flow analysis in developing U2bekistan. Resour. Conserv.
28	1483	Recycl. 89, 76–85. https://doi.org/10.1016/j.resconrec.2014.05.004
29	1484	Rezny, L., White, J.B., Maresova, P., 2019. The knowledge economy: Key to sustainable
30	1485	development? Struct. Change Econ. Dyn. S0954349X18302200.
31	1486	https://doi.org/10.1016/j.strueco.2019.02.003
32	1487	Robaina-Alves, M., Moutinho, V., Macedo, P., 2015. A new frontier approach to model the
33	1488	eco-efficiency in European countries. J. Clean. Prod. 103, 562-573.
34	1489	https://doi.org/10.1016/j.jclepro.2015.01.038
35	1490	Rodrigues, J., Domingos, T., 2008. Consumer and producer environmental responsibility:
20 27	1491	Comparing two approaches. Ecol. Econ. 66, 533–546.
38	1492	https://doi.org/10.1016/j.ecolecon.2007.12.010
39	1493	Rodrigues, J., Domingos, T., Giljum, S., Schneider, F., 2006. Designing an indicator of
40	1494	environmental responsibility. Ecol. Econ. 59, 256–266.
41	1495	https://doi.org/10.1016/i.ecolecon.2005.10.002
42	1496	Rodrigues I Domingos T Margues A 2010 Carbon Responsibility and Embodied
43	1497	Emissions: Theory and Management Routledge
44	1/08	Rogeli I Huppmann D Krey V Rishi K Clarke I Gidden M Nicholls 7
45	1490	Mainshausan M. 2010 A new scenario logic for the Daris A grooment long term
46	1499	toren eventure and Notive 572, 257, 262, https://doi.org/10.1028/a41586.010.1541.4
4/	1500	C = 2017 The decomposition of $C = 2017$ The decomposition of $C = 2017$
48	1501	Romoti, A., Koroneos, C., 2017. The decomposition of CO2 emissions from energy use in
49 50	1502	Greece before and during the economic crisis and their decoupling from economic
51	1503	growth. Renew. Sustain. Energy Rev. 76, 448–459.
52	1504	https://doi.org/10.1016/j.rser.2017.03.026
53	1505	Sakai, M., Brockway, P.E., Barrett, J.R., Taylor, P.G., 2019. Thermodynamic Efficiency
54	1506	Gains and their Role as a Key "Engine of Economic Growth"." ENERGIES 12.
55	1507	https://doi.org/10.3390/en12010110
56	1508	Salim, R.A., Rafiq, S., 2012. Why do some emerging economies proactively accelerate the
57	1509	adoption of renewable energy? Energy Econ. 34, 1051–1057.
58	1510	https://doi.org/10.1016/j.eneco.2011.08.015
59	1511	Sanchez, L.F., Stern, D.I., 2016. Drivers of industrial and non-industrial greenhouse gas
00	1512	Vemissions. Ecol. Econ. 124, 17–24. https://doi.org/10.1016/i.ecolecon.2016.01.008
	-	AA

1		
2		
3 ⊿	1513	Santos, J., Domingos, T., Sousa, T., St Aubyn, M., 2018. Useful Exergy Is Key in Obtaining
5	1514	Plausible Aggregate Production Functions and Recognizing the Role of Energy in
6	1515	Economic Growth: Portugal 1960-2009. Ecol. Econ. 148, 103–120.
7	1516	https://doi.org/10.1016/j.ecolecon.2018.01.008
8	1517	Sarkodie, S.A., Strezov, V., 2019. A review on Environmental Kuznets Curve hypothesis
9	1518	using bibliometric and meta-analysis. Sci. Total Environ. 649, 128–145.
10	1519	https://doi.org/10.1016/j.scitotenv.2018.08.276
11	1520	Sarkodie, S.A., Strezov, V., Weldekidan, H., Asamoah, E.F., Owusu, P.A., Doyi, I.N.Y.,
12	1521	2019. Environmental sustainability assessment using dynamic Autoregressive-
15 14	1522	Distributed Lag simulations-Nexus between greenhouse gas emissions, biomass
15	1523	energy, food and economic growth. Sci. TOTAL Environ. 668, 318–332.
16	1524	https://doi.org/10.1016/j.scitotenv.2019.02.432
17	1525	Ščasný, M., Kovanda, J., Hák, T., 2003. Material flow accounts, balances and derived
18	1526	indicators for the Czech Republic during the 1990s: Results and recommendations for
19	1527	methodological improvements, Ecol. Econ. 45, 41–57, https://doi.org/10.1016/S0921-
20	1528	8009(02)00260-4
21	1529	Schaffartzik, A., Haberl, H., Kastner, T., Wiedenhofer, D., Eisenmenger, N., Erb, KH.,
22	1530	2015 Trading Land: A Review of Approaches to Accounting for Upstream Land
25 24	1530	Requirements of Traded Products: A Review of Unstream J and Accounts J Ind
25	1532	Ecol 19 703_714 https://doi.org/10.1111/jiec.12258
26	1532	Schaffartzik A Mayer A Gingrich S Fisenmenger N Lov C Krausmann F 2014
27	1534	The global metabolic transition: Regional patterns and trends of global material flows
28	1535	1050 2010 Glob Environ Change 26 87 97
29	1535	https://doi.org/10.1016/j.gloonycha.2014.02.012
30	1527	Schondl II. Eischen Kouralski M. West I. Cilium S. Dittrich M. Eischmengen N.
31	1520	Schandi, H., Fischer-Kowalski, M., West, J., Ohjun, S., Diurich, M., Eisenmenger, N.,
32 22	1538	Geschke, A., Lieber, M., Wieland, H., Schaffartzik, A., Krausmann, F., Gierlinger, S.,
33 34	1539	Hosking, K., Lenzen, M., Tanikawa, H., Miatto, A., Fishman, T., 2018. Global
35	1540	Material Flows and Resource Productivity: Forty Years of Evidence. J. Ind. Ecol. 22,
36	1541	827–838. https://doi.org/10.1111/jiec.12626
37	1542	Schandl, H., Fischer-Kowalski, M., West, J., Giljum, S., Dittrich, M., Eisenmenger, N.,
38	1543	Geschke, A., Lieber, M., Wieland, H., Schaffartzik, A., Krausmann, F., Gierlinger, S.,
39	1544	Hosking, K., Lenzen, M., Tanikawa, H., Miatto, A., Fishman, T., 2017. Global
40	1545	Material Flows and Resource Productivity: Forty Years of Evidence. J. Ind. Ecol.
41	1546	https://doi.org/10.1111/jiec.12626
42 13	1547	Schandl, H., Poldy, F., Turner, G.M., Measham, T.G., Walker, D.H., Eisenmenger, N., 2008.
44	1548	Australia's resource use trajectories. J. Ind. Ecol. 12, 669–685.
45	1549	https://doi.org/10.1111/j.1530-9290.2008.00075.x
46	1550	Schandl, H., Turner, G.M., 2009. The Dematerialization Potential of the Australian Economy.
47	1551	J. Ind. Ecol. 13, 863–880. https://doi.org/10.1111/j.1530-9290.2009.00163.x
48	1552	Schandl, H., West, J., 2012. Material Flows and Material Productivity in China, Australia, and
49	1553	Japan. J. Ind. Ecol. 16, 352–364. https://doi.org/10.1111/j.1530-9290.2011.00420.x
50	1554	Schandl, H., West, J., 2010. Resource use and resource efficiency in the Asia-Pacific region.
51	1555	Glob. Environ. Change 20, 636–647. https://doi.org/10.1016/j.gloenvcha.2010.06.003
52 52	1556	Schneider, F., Kallis, G., Martinez-Alier, J., 2010. Crisis or opportunity? Economic degrowth
53 54	1557	for social equity and ecological sustainability. Introduction to this special issue. J.
55	1558	Clean. Prod. 18, 511–518.
56	1559	Schulz, N.B., 2007. The direct material inputs into Singapore's development. J. Ind. Ecol. 11.
57	1560	117–131. https://doi.org/10.1162/iie.2007.1200
58	1561	Sekulova, F., Kallis, G., Rodríguez-Labaios, B., Schneider, F. 2013, Degrowth: from theory
59	1562	to practice. J. Clean. Prod. 38. 1–6.
60		
		45

3	1563	Serrenho, A.C., Sousa, T., Warr, B., Ayres, R.U., Domingos, T., 2014. Decomposition of
4	1564	useful work intensity: The EU (European Union)-15 countries from 1960 to 2009.
5	1565	ENERGY 76 704–715 https://doi.org/10.1016/j.energy 2014.08.068
6	1566	Serrenho A C Warr B Sousa T Avres B U Domingos T 2016 Structure and
7	1567	dynamics of usoful work along the agriculture industry sorvices transition: Portugal
8	1569	from 1856 to 2000. Struct, CILANCE Econ. Dur. 26, 1, 21
9 10	1508	Irom 1850 to 2009. Struct. CHANGE Econ. Dyn. 30, 1–21.
10	1569	https://doi.org/10.1016/j.strueco.2015.10.004
12	1570	Shao, Q., Schaffartzik, A., Mayer, A., Krausmann, F., 2017. The high 'price' of
13	1571	dematerialization: A dynamic panel data analysis of material use and economic
14	1572	recession. J. Clean. Prod. 167, 120–132. https://doi.org/10.1016/j.jclepro.2017.08.158
15	1573	Shuai, C., Chen, X., Shen, L., Jiao, L., Wu, Y., Tan, Y., 2017. The turning points of carbon
16	1574	Kuznets curve: Evidences from panel and time-series data of 164 countries. J. Clean.
17	1575	Prod. 162, 1031–1047. https://doi.org/10.1016/j.jclepro.2017.06.049
18	1576	Simas, M., Pauliuk, S., Wood, R., Hertwich, E.G., Stadler, K., 2017. Correlation between
19	1577	production and consumption-based environmental indicators The link to affluence and
20	1578	the effect on ranking environmental performance of countries Ecol Indic 76 317–
21	1579	323 https://doi.org/10.1016/i.ecolind.2017.01.026
22	1580	Solilová V. Nerudová D. 2015 Evaluation of Greenhouse Gas Emissions and Related
23	1501	Aspects: Case of the Czeeh Benublie Acte Univ. Agric Silvie Mondel Brun 62
24 25	1501	Aspects. Case of the Czech Republic. Acta Oniv. Agric. Shvic. Mendel. Brun. 05, $281, 202, 144, res. (10, 1111)/restarr 2015 (2010201)$
25 26	1582	281-292. https://doi.org/10.11118/actaun201563010281
20	1583	Sorrell, S., Gatersleben, B., Druckman, A., 2020. The limits of energy sufficiency: A review
28	1584	of the evidence for rebound effects and negative spillovers from behavioural change.
29	1585	Energy Res. Soc. Sci. 64, 101439. https://doi.org/10.1016/j.erss.2020.101439
30	1586	Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R.,
31	1587	Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace,
32	1588	G.M., Persson, L.M., Ramanathan, V., Reyers, B., Sorlin, S., 2015. Planetary
33	1589	boundaries: Guiding human development on a changing planet. Science 347, doi:
34	1590	10.1126/science.1259855. https://doi.org/10.1126/science.1259855
35	1591	Steger, S., Bleischwitz, R., 2011, Drivers for the use of materials across countries, J. Clean.
36	1592	Prod. 19. 816–826. https://doi.org/10.1016/i.iclepro.2010.08.016
3/	1593	Steinberger LK Krausmann F 2011 Material and Energy Productivity Environ Sci
38	1594	Technol 45 1169-1176 https://doi.org/10.1021/es1028537
39 40	1505	Steinberger IK Krausmann E Eisenmenger N 2010 Global patterns of materials use: A
40 41	1595	socioconomia and coophysical analysis East Econ. 60, 1149, 1159
42	1590	https://doi.org/10.1010/baselseer 2000.12.000
43	159/	nttps://doi.org/10.1016/j.ecolecon.2009.12.009
44	1598	Steinberger, J.K., Krausmann, F., Getzner, M., Schandl, H., West, J., 2013. Development and
45	1599	Dematerialization: An International Study. PLOS ONE 8.
46	1600	https://doi.org/10.1371/journal.pone.0070385
47	1601	Steininger, K.W., Lininger, C., Meyer, L.H., Muñoz, P., Schinko, T., 2016. Multiple carbon
48	1602	accounting to support just and effective climate policies. Nat. Clim. Change 6, 35–41.
49	1603	https://doi.org/10.1038/nclimate2867
50	1604	Steininger, K.W., Lininger, C., Meyer, L.H., Muñoz, P., Schinko, T., 2015. Multiple carbon
51	1605	accounting to support just and effective climate policies. Nat. Clim. Change 6, 35–41.
52 52	1606	https://doi.org/10.1038/nclimate2867
55 57	1607	Stern, D.L. 2017. The environmental Kuznets curve after 25 years. J. Bioeconomics 19, 7–28.
55	1608	https://doi.org/10.1007/s10818-017-9243-1
56	1609	Stern DI 2011 The role of energy in economic growth: Energy and growth $\Delta nn N V$
57	1610	A cad Sci 1210 26 51 https://doi.org/10.1111/j.1740.6622.2010.05021 v
58	1611	Storn D L 1007 L imits to substitution and improves ibility in and visition and consumptions Λ
59	1612	Stern, D.I., 1997. Limits to substitution and inteversionity in production and consumption: A
60	1012	heoclassical interpretation of ecological economics. Ecol. Econ. 21, 197–215.
	1013	• https://doi.org/10.1010/S0921-8009(90)00103-0
	,	

 Stern, D.I., Gerlagh, R., Burke, P.J., 2017. Modeling the emissions-income relationship using long-run growth rates. Environ. Dev. Econ. 22, 699–724. https://doi.org/10.1017/S1355770X17000109 Stightz, J., Sen, A., Fitoussi, J., 2009. Report of the Commission on the Measurement of Economic Performance and Social Progress (CMEPSP). Stightz, J., Sen, A., Fitoussi, J., 2009. Report of the Commission on the Measurement of Economic Performance and Social Progress (CMEPSP). Stightz, J., Sen, B., Batzentis, T., 2016. Kaya identity for analysis of the main drivers of CHG emissions and feasibility to implement EU "20-20-20" targets in the Baltic States. Renew. Sustain. ENERGY Rev. 58, 1108–1113. https://doi.org/10.1016/j.rser.2015.12.311 Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J. Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.130-9200.2008 00093.x Tiba, S., Omri, A., 2017. Literature survey on the relationships between energy consumption and economic growth. Renew. Sustain. Energy Rev. 69, 1129–1146. https://doi.org/10.1016/j.rser.2016.09.113 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. Tugeu, C.T., Ozturk, L., Aslan, A., 2012. Renewable and nori-renewable energy consumption and ceonomic growth relationship revisited: Evidence from G7 countries. Energy Feon. 34, 1942. 1950. https://doi.org/10.1016/j.cncc.201208.021 TW2050. 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (ILASA), www.tw/12050.org Laasehurg, Austria. UN, 2019. Global Material Flows Database (MaX) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unst/Snama/ (accessed 11.19.19). UNF IP. 2019. Global Actical Flows Database (MaX) [WWW Do	1 ว		
 Stern, Dir, Meragir, K., Burke, F.J., 2017. Modeling the Emssion medic relationship using long-eru prowth rates. Environ. Dev. Econ. 22, 699–724. https://doi.org/10.1017/S1355770X17000109 Sijtitz, J., Sen, A., Fitousi, J., 2009. Report of the Commission on the Measurement of Economic Performance and Social Progress (CMEPSP). Sijepanović, S., 2018. Relationship between energy consumption and economic growth in 30 countries in Europe. Panel. Ekon. Progl. 69, 43–57. https://doi.org/10.32910/cp.69.13 Streimikiene, D., Balezentis, T., 2016. Kaya identify for analysis of the main drivers of CHG emissions and feasibility to implement EU "20-20.20" targets in the Baltic States. Renew. Sustain. ENERGY Rev. 58, 1108–1113. Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J. Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-920.2008/00093x Tiaka, S., Omir, A., 2017. Literature survey on the relationships between energy. environment and economic growth. Renew. Sustain. Energy Rev. 69, 1129–1146. https://doi.org/10.1016/j.rscr.2016.09.113 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. Tugeu, C.T., Ozturk, L., Aslan, A., 2012. Renewable and nor-renewable energy consumption and ceonomic growth relationship revisited: Evidence from 67 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.eneco.2012/08.021 TWI2050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. Informational Institute for Applied Systems Analysis (IIASA), www.twi2050.org/12.achottary, Austria. UNE PL, 2011b. Towards a greent economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (INEP), Nuirobi, Kenya.<!--</td--><td>∠ 3</td><td>1614</td><td>Star DI Carlach D. Durka DI 2017 Madaling the amigsions income relationship using</td>	∠ 3	1614	Star DI Carlach D. Durka DI 2017 Madaling the amigsions income relationship using
 iong-tun growin Face. Further, 12, 099–724. integrido corg 10.1017/S1355770X17000109 Stightz, J., Sen, A., Fitoussi, J., 2009. Report of the Commission on the Measurement of Economic Performance and Social Progress (CMEPSP). Stjepanović, S., 2018. Relationship between energy consumption and economic growth in 30 countries in Europe - Panel. Ekon. Pregl. 69, 43–57. https://doi.org/10.2019(p.69).13 Streimikiene, D., Balzzentis, T., 2016. Kayai dentity for analysis of the main drivers of CHG emissions and feasibility to implement EU "20-20-20" targets in the Baltic States. Renew. Sustain. ENERGY Rev. 58, 1108–1113. Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J. Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008(00093)x Tiba, S., Omri, A., 2017. Literature survey on the relationships between energy, environment and economic growth. Renew. Sustain. Energy Rev. 69, 1129–1146. https://doi.org/10.1016/j.rscr.2016.09.113 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. BUIL 31, 15. Tugeu, C.T., Ozturk, I., Aslam, A., 2012. Renewable and nori-ronewable (energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.rsec.2012.08.021 TWI2050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), www.twi2050.org/Laxenburg, Austria. WN 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URE https://matstat.morg/unds/agaama(accessed 11.9.19). UNFE (P2, 2019. Global Material Flows Database, [WW Document]. URL https://doi.org/10.0166/j.rseco.2019.Natitable development and poverty eradicatio	4	1014	Stern, D.I., Gerlagn, K., Burke, P.J., 2017. Modeling the emissions-income relationship using
 1616 https://doi.org/10.1017/S13557/02417000109 1617 Stiglitz, J., Sen, A., Fitoussi, J., 2009. Report of the Commission on the Measurement of Economic Performance and Social Progress (CMEPSP). 1618 Stjepanović, S., 2018. Relationship between energy consumption and economic growth in 30 countries in Europe - Panel. Ekon. Pregl. 69, 43–57. https://doi.org/10.32910/ep.69.1.3 1619 Streimikiene, D., Balezentis, T., 2016. Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU '20-20-20' targets in the Baltic States. 1628 Renew. Sustain. ENERGY Rev. 58, 1108–1113. 1629 Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J. Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008.00093.x 170 Tiba, S., Omri, A., 2017. Literature survey on the relationships between energy, environment and economic growth. Renew. Sustain. Energy Rev. 69, 1129–1146. https://doi.org/10.1016/j.jsrs.2016.00.9.113 170 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. 171 Tigge, C.T., Outurk, I., Askan, A., 2012. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.neco.2012.08.021 173 Tiwari, A.E., 1920. Dutts: //doi.org/10.1016/j.ser.2016.08.021 17412050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), www.twi2050.007 [1.acchiugt, J.Mstria. 163 UNP, 2019. Global Material Flows Database [WW W Document]. UL N. Natt. Div. URL https://unstata.norg/und8/anama/ (accessed 11.19.19). 1640 UNE 1RP, 2019. Global Material Flows Database [WW Document]. URL httt	5	1015	long-run growth rates. Environ. Dev. Econ. 22, $699-724$.
 Stigutz, J., Sen, A., Futoussi, J., 2009. Report of the Commission on the Measurement of Economic Performance and Social Progress (CMEPSP). Stipanović, S., 2018. Relationship between energy consumption and economic growth in 30 countries in Europe - Panel. Ekon. Pregl. 69, 43–57. https://doi.org/10.32910/ep.69.1.3 Streimikiene, D., Balezentis, T., 2016. Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU "20-20-20" targets in the Baltic States. Renew. Sustain. ENERGY Rev. 58, 1108–1113. Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J. Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008/00093.x Tiba, S., Omri, A., 2017. Literature survey on the relationships between anergy, environment and economic growth. Renew. Sustain. Energy Rev. 69, 1129–1146. https://doi.org/10.1016/j.rser.2016.09.113 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. Tugeu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from of zoontries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.encco.2012.08.021 TWi2050, 2018. Transformations to Achieve the Sustainable Devlepoment Goals. Report prepared by The World in 2050 initiative. Infernational Institute for Applied Systems Analysis (ILASA), www.tvi2050.org.(Laxenburg, Austria. UNS 109. Vulle National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/snama/ (accessed 11.19.19). UNE P. 2011b. Towards a green economy und/sngama/ (accessed 11.19.19). UNE P. 2011b. Towards a green economy und/sngama. Nairobi. UNEP, 2011b. Towards a green economy und/sngama (accessed 11.19.19).	6	1616	https://doi.org/10.101//S1355//0X1/000109
 Iconomic Performance and Social Progress (CMEPSP). Iconomic Performance And Progress (CMEPSP). Iconomic Performance Analys	7	1617	Stiglitz, J., Sen, A., Fitoussi, J., 2009. Report of the Commission on the Measurement of
 Stjepanović, S., 2018. Relationship between energy consumption and economic growth in 30 countries in Europe Panel. Ekon. Pregl. 69, 43–57. https://doi.org/10.32910/ep.69.1.3 Streimikiene, D., Balezentis, T., 2016. Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU "20-20-20" targets in the Balite States. Renew. Sustain. ENERGY Rev. 58, 1108–1113. https://doi.org/10.1016/j.rser.2015.12.311 Takiguchi, H., Takemoto, K., 2008. Japanese 3R, Policies based on material flow analysis. J. Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008.00093.x Tiba, S., Omri, A., 2017. Literature survey on the relationships between energy environment and economic growth Renew. Sustain. Energy Rev. 69, 1129–1146. https://doi.org/10.1016/j.rser.2016.09.113 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. Tugeu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and nor-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.rseco.2012.08.021 TW12050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), www.twi2050.org. (Laxenburg, Austria. Nux, 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/undisnama/ (accessed 11.19.19). UNFIP, 2011. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. UNREP, 2011b. Towards a greent economy: pathway to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme, Suirobi. UNFIP, 2011b. Towa	8	1618	Economic Performance and Social Progress (CMEPSP).
 1620 countries in Europe - Panel. Ekon. Pregl. 69, 43–57. https://doi.org/10.32910/ep.69.1.3 1621 Streimikiene, D., Balezentis, T., 2016. Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU "20-20-20" targets in the Baltie States: Renew. Sustain. ENERGY Rev. 58, 1108–1113. 1624 Italiane, H., Takemoto, K., 2008. Japanese 3R policies based on material flow enalysis. J. Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008.00093x 1625 Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow enalysis. J. Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008.00093x 1626 Tiba, S., Omri, A., 2017. Literature survey on the relationships between energy, environment and economic growth. Renew. Sustain. Energy Rev. 69, 1129–1146. 1629 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. 1632 Tugeu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.tercco.2012.08.021 1782 TW2050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), www.twi2050.org/Laxenburg, Austria. 1038 UN. 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). 1040 UNE IRP, 2019. Global Material Flows Database (WW Document]. URL https://www.resourcespanel.org/global material-flows-database (accessed 11.19.19). 1041 UNE IRP, 2019. Global Resources we and environmental impacts from economic growthy eradication – a synthesis for policy makers. United Nations En	9	1619	Stjepanović, S., 2018. Relationship between energy consumption and economic growth in 30
 Streimikiene, D., Balezentis, T., 2016. Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU"20-20-20" targets in the Bathe States. Renew. Sustain. ENERGY Rev. 58, 1108–1113. https://doi.org/10.1016/j.rser.2015.12.311 Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J. Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008.00093x Tiba, S., Omri, A., 2017. Literature survey on the relationships between heregy, environment and economic growth. Renew. Sustain. Energy Rev. 69, 1129–1146. https://doi.org/10.1016/j.rser.2016.09.113 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. Tugeu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.rseco.2012.08.021 TWI2050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), www.twi2050.org. Laxenburg, Austria. UN. 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstatu.org/undsngaam/ (accessed 11.19.19). UNE IRP, 2019. Global Material Flows Database [WWW Document]. URL https://www.resourcepanel.org/ global material-flows-database (accessed 11.19.19). UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), Nairobi, Kenya. UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment and poverty eradication – a synth	10	1620	countries in Europe - Panel. Ekon. Pregl. 69, 43–57. https://doi.org/10.32910/ep.69.1.3
 de22 emissions and feasibility to implement EU "20-20-20" targets in the Baltie States. Renew. Sustain. ENERGY Rev. 58, 1108–1113. https://doi.org/10.1016/j.rscr.2015.12.311 le25 le26 le27 le26 le27 le28 le29 le	11	1621	Streimikiene, D., Balezentis, T., 2016. Kaya identity for analysis of the main drivers of GHG
 Renew. Sustain. ENERGY Rev. 58, 1108–1113. https://doi.org/10.1016/j.rscr.2015.12.311 Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J. Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008(00093x) Tiba, S., Omri, A., 2017. Literature survey on the relationships between energy. environment and economic growth. Renew. Sustain. Energy Rev. 69, 1129–1146. https://doi.org/10.1016/j.rscr.2016.09.113 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. Tugeu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from 67 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.eneco.2012.08.021 TWI2050, 2018. Transformations to Achieve the Sustainable Devleopment Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (ILASA), www.twi2050.org, Laxenburg, Austria. UN, 2019. National Accounts - Analysis of Main Aggreades (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. UNEP, 2011a. Decoupling natural resource such and vironmental impacts from conomic growth. United Nations Environment Programme, Nairobi. UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations, 1987. Our Common Future-Brondtand Report 1987.pdf. UNEP. 2019. Global Resources Cutlook 2019. Natural resources fo	12	1622	emissions and feasibility to implement EU "20-20-20" targets in the Baltic States.
1624 https://doi.org/10.1016/j.rser.2015.12.311 1625 Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J. 1626 Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J. 1627 Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J. 1628 and ccol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008.00093.x 1629 https://doi.org/10.1016/j.rser.2016.09.113 1630 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP 1631 and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. 1632 Tugeu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and non-renewable energy consumption 1633 and economic growth relationship revisited: Evidence from G7 countries. Energy 1634 Econ. 34, 1942–1950. https://doi.org/10.1016/j.eneco.2012.08.021 1635 TWID050, 2018. Transformations to Achieve the Sustainable Development Goals. Report 1636 prepared by The World in 2050 initiative. International Institute for Applied Systems 1637 National Accounts - Analysis of Main Aggregales (AMA) [WWW Document]. U. 1638 Nitosi Accounts - Analysis of Main Aggregales (AMA) [WWW Document]. U. 1649 UNE P. 2019. Global Material Flows Database [WWW Documen	14	1623	Renew. Sustain. ENERGY Rev. 58, 1108–1113.
 1625 Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J. Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008/00093x 1716a, S., Omri, A., 2017. Literature survey on the relationships between energy. travironment and economic growth. Renew. Sustain. Energy Rev. 69, 1129–1146. https://doi.org/10.1016/j.rscr.2016.09.113 1700 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. 1632 Tugeu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from 67 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.eneco.2012.08.021 17WI2050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), www.twi2050.org. Laxenburg, Austria. 1038 UN, 2019. National Accounts - Analysis of Main Aggregates (AIMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). 1040 UNE IRP, 2019. Global Material Flows Database (WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). 1041 UNEP, 2011b. Towards a green cenormy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), Nairobi, Kenya. 1042 UNEPCC, 2019. Global Resources Quilook 2019. Natural resources for the future we want. United Nations Environment Programme, Nairobi. 1044 UNECC, 2019. Global Resources Quilook 2019. Natural resources for the future we want. United Nations Environment Programme, Nairobi. 1045 UNEP, 2019. Global Resources Quilook 2019. Natural resources for the future we want. United Nations Environment Programme, Nair	15	1624	https://doi.org/10.1016/j.rser.2015.12.311
 Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008.00093.x Tiba, S., Onri, A., 2017. Literature survey on the relationships between heregy, havironment and economic growth. Renew Sustain. Energy Rev. 69, 1129–1146. https://doi.org/10.1016/j.rser.2016.09.113 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. Tugeu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j. encco.2012.08.021 TWI2050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), www.twi2050.org. Lazenburg, Austria. UN, 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). UNEF RP, 2019. Global Material Flows-database (accessed 11.19.19). UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. UNEP, Nairobi, Kenya. UNEP, Nations Environment Programme, Nairobi. UNEP, Nations Environment Programme, Nairobi, Kenya. UNEP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations. Environment Programme, Nairobi, Kenya. UNEP, Nairobi, Kenya. UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations. Environment Programme, Nairobi, Kenya. UNEP, Cuop. GHz data thom UNFCCC [WW Document]. URL https://di.unfece.mt/time-scries (accessed 11.19.19). Unated Nations, 1987. Our Common Future-Brundtland_Report_198	16	1625	Takiguchi, H., Takemoto, K., 2008. Japanese 3R policies based on material flow analysis. J.
 1627 1628 1629 1629 1629 1629 1620 1629 1620 1621 1620 1621 1621 1620 1621 1622 1621 1622 1623 1623 1624 1624 1625 1626 1627 1627 1628 1629 1629 1620 1620 1621 1622 1623 1624 1624 1625 1626 1626 1627 1626 1628 1629 1620 1620 1621 1621 1621 1622 1623 1624 1625 1626 1626 1626 1627 1627 1628 1628 1629 1629 1630 1631 1631 1632 1632 1634 1635 1635 1635 1636 1636 1637 1637 1638 1637 1638 1638 1638 1638 1638 1639 1640 1641 1641 1641 1642 1642 1642 1643 1644 1644 1645 1645 1645 1646 1646 1646 1647 1648 1648 1649 1649 1649 1649 1640 1641 1641 1641 1641 1642 1641 1642 <li< td=""><td>17</td><td>1626</td><td>Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008.00093.x</td></li<>	17	1626	Ind. Ecol. 12, 792–798. https://doi.org/10.1111/j.1530-9290.2008.00093.x
 and economic growth. Renew. Sustain. Energy Rev. 69, 1129–1146. https://doi.org/10.1016/j.rser.2016.09.113 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. Tugcu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.eneco.2012.08.021 TW12050, 2018. Transformations to Achieve the Sustainable Dovelopment Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), www.twi2050.org. Lavenburg. Austria. UN, 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). UNE IRP, 2019. Global Material Flows Database [WWW Document]. URL https://www.resourcepanel.org/global material-flows-database (accessed 11.19.19). UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. UNEP, P., 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations Environment Programme, Nairobi. UNEPCC, 2019. GHG data from UNFCCC [WWW Document]. URL https://di.unfcce.nt/time-series (accessed 11.19.19). United Nations, 1987. Our Common Future. Report of the World Commission on Environment and Development. UN Document, Online at http://onspect.nl/pdf/Our_Common Future-Brundtland_Report_1987.pdf. Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20	18	1627	Tiba, S., Omri, A., 2017. Literature survey on the relationships between energy, environment
 https://doi.org/10.1016/j.rser.2016.09.113 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. Tugeu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and nor-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.neeco.2012.08.021 TW12050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (ILASA), www.twi2050.org, Laxenburg, Austria. UN, National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/sngama/ (accessed 11.19.19). UNE IRP, 2019. Global Material Flows Database [WWW Document]. URL https://www.resourcepanel.org/global-material-flows-database (accessed 11.19.19). UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), Nairobi, Kenya. UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL https://di.unfcc int/time_series (accessed 11.19.19). UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL https://di.unfcc int/time_series (accessed 11.19.19). Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int, J. Autom. Technol. 8, 626-633. https://doi.org/10.2096/jiat.2014.p0626 Valadkhaui, A., Roshdi, I., Smyth, R., 2016. A multiplicative enviro	19	1628	and economic growth. Renew. Sustain. Energy Rev. 69, 1129–1146.
 Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. Tugeu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.eneco.2012.08.021 TW12050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), www.twi2050.org, Laxenburg, Austria. UN, 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). UNE IRP, 2019. Global Material Flows Database [WWW Document]. URL https://www.resourcepanel.org/global-material-flows-database (accessed 11.19.19). UNEP, 2011a. Decoupling natural resource use and environment a impacts from economic growth. United Nations Environment Programme, Nairobi. UNEP, 2011b. Towards a greent economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), Nairobi, Kenya. UNEP-RP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations Environment Programme, Nairobi, Kenya. UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL http://conspect.nl/pdf/Our_Common_Future-Report of the World Commission on Environment and Development. UN Document, URL http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int. J. Autom. Technol. 8, 626–633. h	20	1629	https://doi.org/10.1016/i.rser.2016.09.113
 and CO2 emissions: Evidence from India. Econ. Bull. 31, 15. Tugeu, C. T., Ozturk, I., Aslan, A., 2012. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.encco.2012.08.021 TWI2050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), www.twi2050.org/Laxenburg, Austria. UN, 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). UNE IRP, 2019. Global Material Flows Database [WWW Document]. URL https://www.resourcepanel.org/global-material-flows-database (accessed 11.19.19). UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. UNEP, 2011b. Towards a greeri economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), Nairobi, Kenya. UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations Environment Programme, Nairobi, Kenya. UNEP-Z, 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations, 1987. Our Common Future. Report of the World Commission on Environment and Development. UN Document]. URL https://di.unfece.int/time_series (accessed 11.19.19). United Nations, 1987. Our Common Future. Benudtland Report 1987.pdf. Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 555-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int. J. Autom. Technol.	21	1630	Tiwari, A.K., 2011, A structural VAR analysis of renewable energy consumption, real GDP
 1632 Tugeu, C.T., Ozturk, I., Aslan, A., 2012. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 34, 1942–1950. https://doi.org/10.1016/j.eneco.2012.08.021 1633 TW21050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (ILASA), www.twi2050.org, Laxenburg, Austria. 1638 UN, 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). 1640 UNE IRP, 2019. Global Material Flows Database [WWW Document]. URL https://www.rcsourcepanel.org/global-material-flows-database (accessed 11.19.19). 1641 UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. 1644 UNEP, 2011a. Decoupling natural resource use and environment Programme (UNEP), Nairobi, Kenya. 1647 UNEP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations Environment Programme, Nairobi, Kenya. 1648 UNEPCC, 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations Environment Programme, Nairobi, Kenya. 1649 UNFCCC, 2019. Global arfom UNFCCC [WWW Document]. URL https://di.unfccc.int/time_series (accessed 11.19.19). 1651 United Nations, 1987. Our Common Future. Report of the World Commission on Environment and Development. UN Document, Online at http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. 1654 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainabhifty (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int, J. Autom. Te	22	1631	and CO2 emissions: Evidence from India Econ Bull 31 15
 1632 Figst, O.T., Patan, F., Stan, F.R., Stan, Stan,	25 24	1632	Tugen C.T. Ozturk I. Aslan A. 2012 Renewable and non-renewable energy consumption
 1635 and constitute for while the formation of the order of the order	25	1633	and economic growth relationship revisited: Evidence from G7 countries. Energy
 TW12050, 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), www.twi2050.org. Laxenburg, Austria. UN, 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). UNE IRP, 2019. Global Material Flows Database [WWW Document]. URL https://www.resourcepanel.org/global-material-flows-database (accessed 11.19.19). UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), Nairobi, Kenya. UNEP-R, 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations Environment Programme, Nairobi, Kenya. UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL https://di.unfccc, int/time_series (accessed 11.19.19). United Nations, 1987. Our Common Future. Report of the World Commission on Environment and Development. UN Document, Online at http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. Uwasu, M., Hara, K., Kobáyashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int. J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363+375. https://doi.org/10.1016/j.eneco.2015.12.2018 van den Bergh, J.C.J.M., Kallis,	26	163/	Econ 34 1942 1950 https://doi.org/10.1016/i.eneco.2012.08.021
 1035 1035 1035 1035 1035 1037 1038 1038 1039 1039 1039 1031 1031 1032 1031 1032 1031 1032 1033 1033 1034 1034 1035 1035 1036 1037 1039 1031 1031 1031 1032 1031 <li< td=""><td>27</td><td>1635</td><td>TWI2050 2018 Transformations to Achieve the Sustainable Development Goals Report</td></li<>	27	1635	TWI2050 2018 Transformations to Achieve the Sustainable Development Goals Report
 Instantion of the second structure in the second structure for appreciation of the second structure in the second	28	1626	number of the World in 2050 initiative. International Institute for Applied Systems
 Analysis (IRASA), www.lu2050.0fg. Eakenoug, Austra. Ios7 INA Siter, Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). Ios8 UN, 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. Ios9 N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). UNE IRP, 2019. Global Material Flows Database [WWW Document]. URL https://www.resourcepanel.org/global-material-flows-database (accessed 11.19.19). UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), Nairobi, Kenya. UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. united Nations Environment Programme, Nairobi, Kenya. UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL https://di.unfccc.int/time_series (accessed 11.19.19). United Nations, 1987. Our Common Future. Report of the World Commission on Environment and Development. UN Document, Online at http://conspect.nl/pdf/Our_Common Future-Brundtland_Report_1987.pdf. Uwasu, M, Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.2065/jiat.2014.p0626 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363-375. http	29	1627	Analysis (ILASA), where twi2050 and L averburg Austria
 1638 UN, 2019. National Accounts - Analysis of Main Aggregates (AMA) [WWW Document]. U. 1639 N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19). 1640 UNE IRP, 2019. Global Material Flows Database [WWW Document]. URL 1641 https://www.resourcepanel.org/global-material-flows-database (accessed 11.19.19). 1642 UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic 1643 growth. United Nations Environment Programme, Nairobi. 1644 UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty 1645 eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), Nairobi, Kenya. 1646 UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. 1647 UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. 1648 UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL 1650 https://di.unfccc.int/time series (accessed 11.19.19). 1651 United Nations, 1987. Our Common Future. Report of the World Commission on 1652 Environment and Development. UN Document, Online at 1653 http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. 1654 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for 1655 Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 1656 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel 1657 Data. Int, J. Autom. Technol. 8, 626-633. https://doi.org/10.20965/ijat.2014.p0626 1658 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach 1660 to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 1661 364460404 	30	103/	Analysis (IIASA), www.twi2050.org, Laxenburg, Austria.
 N. Stat. Div. URL https://unstats.un.org/unso/snama/ (accessed 11.19.19). IG40 UNE IRP, 2019. Global Material Flows Database [WWW Document]. URL https://www.resourcepanel.org/global-material-flows-database (accessed 11.19.19). IG42 UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme IG44 UNEP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations Environment Programme, Nairobi, Kenya. IG44 UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL https://di.unfccc.int/time_series (accessed 11.19.19). IG50 United Nations, 1987. Our Common Future. Report of the World Commission on Environment and Development. UN Document, Online at IG51 United Nations, 1987. Our Common Future-Brundtland Report_1987.pdf. Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int. J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363-375. https://doi.org/10.1016/j.eneco.2015.12.018 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JE10021- 3624460404 	31	1038	UN, 2019. National Accounts - Analysis of Main Aggregates (AMA) [www.Document]. U.
 Ic40 UNE IRP, 2019. Global Material Flows Database [W W Document]. URL https://www.resourcepanel.org/global-material-flows-database (accessed 11.19.19). Ic42 UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. IC44 UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), Nairobi, Kenya. IC47 UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. IC47 UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. IC48 UNFCCC, 2019. Global Resources Outlook 2019. Natural resources for the future we want. IC49 UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL https://di.unfccc.int/time_series (accessed 11.19.19). IC51 United Nations, 1987. Our Common Future. Report of the World Commission on Environment and Development. UN Document, Online at http://conspeet.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. IC43 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363+375. https://doi.org/10.1016/j.eneco.2015.12.018 Van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay wit	32	1639	N. Stat. Div. URL https://unstats.un.org/unsd/snaama/ (accessed 11.19.19).
 https://www.resourcepanel.org/global-material-flows-database (accessed 11.19.19). UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), Nairobi, Kenya. UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations Environment Programme, Nairobi, Kenya. UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL https://di.unfccc.int/time_series (accessed 11.19.19). United Nations, 1987. Our Common Future. Report of the World Commission on Environment and Development. UN Document, Online at https://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363+375. https://doi.org/10.1016/j.eneco.2015.12.018 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- 3624460404 	33 34	1640	UNE IRP, 2019. Global Material Flows Database [WWW Document]. URL
 UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi. UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty eradication – a synthesis for policy makers. United Nations Environment Programme (UNEP), Nairobi, Kenya. UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. United Nations Environment Programme, Nairobi, Kenya. UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL https://di.unfccc.int/time_series (accessed 11.19.19). United Nations, 1987. Our Common Future. Report of the World Commission on Environment and Development. UN Document, Online at http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363+375. https://doi.org/10.1016/j.eneco.2015.12.018 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- 3624460404 	35	1641	https://www.resourcepanel.org/global-material-flows-database (accessed 11.19.19).
371643growth. United Nations Environment Programme, Nairobi.381644UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty391645eradication – a synthesis for policy makers. United Nations Environment Programme401646(UNEP), Nairobi, Kenya.411647UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want.411648UNFCCC, 2019. GldG data from UNFCCC [WWW Document]. URL421649UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL431650https://di.unfccc.int/time_series (accessed 11.19.19).441651United Nations, 1987. Our Common Future. Report of the World Commission on471652Environment and Development. UN Document, Online at481653http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf.491654Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for511655Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan,5116562014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel531657Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626541658Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach551660363-375. https://doi.org/10.1016/j.eneco.2015.12.018561van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within5621661Yanetary Boundaries? J. Eco	36	1642	UNEP, 2011a. Decoupling natural resource use and environmental impacts from economic
 1644 UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty 1645 eradication – a synthesis for policy makers. United Nations Environment Programme 1646 (UNEP), Nairobi, Kenya. 1647 UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. 1648 UNEP.IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. 1649 UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL 1650 https://di.unfccc.int/time_series (accessed 11.19.19). 1651 United Nations, 1987. Our Common Future. Report of the World Commission on 1652 Environment and Development. UN Document, Online at 1653 http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. 1654 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for 1655 Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 1656 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel 1657 Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 1658 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach 1659 to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 1661 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- 1663 	37	1643	growth. United Nations Environment Programme, Nairobi.
 1645 eradication – a synthesis for policy makers. United Nations Environment Programme 1646 (UNEP), Nairobi, Kenya. 1647 UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. 1648 UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL 1649 1050 https://di.unfccc.int/time_series (accessed 11.19.19). 1651 United Nations, 1987. Our Common Future. Report of the World Commission on 1652 Environment and Development. UN Document, Online at 1653 http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. 1654 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for 1655 Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 1656 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel 1657 Data. Int. J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 1658 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach 1659 to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363-375. https://doi.org/10.1016/j.eneco.2015.12.018 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- 3624460404 	38	1644	UNEP, 2011b. Towards a green economy: pathways to sustainable development and poverty
 40 1646 (UNEP), Nairobi, Kenya. 41 1647 UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. 42 1648 UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL 44 1650 https://di.unfccc int/time_series (accessed 11.19.19). 46 1651 United Nations, 1987. Our Common Future. Report of the World Commission on 47 1652 Environment and Development. UN Document, Online at 48 1653 http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. 49 1654 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for 50 1655 Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 51 1656 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel 53 1657 Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 54 1658 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach 55 to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 561 610 363-375. https://doi.org/10.1016/j.eneco.2015.12.018 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within 59 1661 Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JE10021- 50 3624460404 	39	1645	eradication – a synthesis for policy makers. United Nations Environment Programme
 41 1647 UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want. 42 1648 United Nations Environment Programme, Nairobi, Kenya. 43 1649 UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL 44 1650 https://di.unfccc.int/time_series (accessed 11.19.19). 45 1651 United Nations, 1987. Our Common Future. Report of the World Commission on 47 1652 Environment and Development. UN Document, Online at 48 1653 http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. 49 1654 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for 50 1655 Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 51 1656 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel 53 1657 Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 54 1658 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach 55 to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 56 363–375. https://doi.org/10.1016/j.eneco.2015.12.018 57 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within 58 1662 Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JE10021- 59 1663 3624460404 	40	1646	(UNEP), Nairobi, Kenya.
 ⁴² 1648 United Nations Environment Programme, Nairobi, Kenya. ⁴³ 1649 UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL ⁴⁴ 1650 https://di.unfccc.int/time_series (accessed 11.19.19). ⁴⁵ 1651 United Nations, 1987. Our Common Future. Report of the World Commission on ⁴⁷ 1652 Environment and Development. UN Document, Online at ⁴⁸ 1653 http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. ⁴⁹ 1654 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for ⁵⁰ 1655 Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, ⁵¹ 1656 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel ⁵³ Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 ⁵⁴ Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach ⁵⁶ to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, ⁵⁶ 363–375. https://doi.org/10.1016/j.eneco.2015.12.018 ⁵⁸ van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within ⁵⁹ Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JE10021- ⁵⁰ 3624460404 	41	1647	UNEP-IRP, 2019. Global Resources Outlook 2019. Natural resources for the future we want.
 ⁴³1649 UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL ⁴⁴1650 https://di.unfccc.int/time_series (accessed 11.19.19). ⁴⁶1651 United Nations, 1987. Our Common Future. Report of the World Commission on ⁴⁷1652 Environment and Development. UN Document, Online at ⁴⁸1653 http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. ⁴⁹1654 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for ⁵⁰1655 Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, ⁵¹1656 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel ⁵³1657 Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 ⁵⁴1658 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach ⁵⁵1660 to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, ⁵⁶1660 363–375. https://doi.org/10.1016/j.eneco.2015.12.018 ⁵⁷1661 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within ⁵⁸1662 Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- ⁵⁰1663 3624460404 	42	1648	United Nations Environment Programme, Nairobi, Kenya.
 https://di.unfccc.int/time_series (accessed 11.19.19). United Nations, 1987. Our Common Future. Report of the World Commission on Environment and Development. UN Document, Online at http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363+375. https://doi.org/10.1016/j.eneco.2015.12.018 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- 3624460404 	45 11	1649	UNFCCC, 2019. GHG data from UNFCCC [WWW Document]. URL
 United Nations, 1987. Our Common Future. Report of the World Commission on Environment and Development. UN Document, Online at http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int. J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363–375. https://doi.org/10.1016/j.eneco.2015.12.018 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- 3624460404 	45	1650	https://di.unfccc.int/time_series (accessed 11.19.19).
 47 1652 Environment and Development. UN Document, Online at http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. 49 1654 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int. J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 54 1658 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363–375. https://doi.org/10.1016/j.eneco.2015.12.018 57 1661 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- 3624460404 	46	1651	United Nations, 1987. Our Common Future. Report of the World Commission on
 1653 http://conspect.nl/pdf/Our_Common_Future-Brundtland_Report_1987.pdf. 1654 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for 1655 Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel Data. Int. J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 1658 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363–375. https://doi.org/10.1016/j.eneco.2015.12.018 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- 3624460404 	47	1652	Environment and Development. UN Document, Online at
 ⁴⁹ 1654 Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for ⁵⁰ 1655 Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, ⁵¹ 1656 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel ⁵³ 1657 Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 ⁵⁴ 1658 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach ⁵⁵ 1659 to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, ⁵⁶ 1660 363–375. https://doi.org/10.1016/j.eneco.2015.12.018 ⁵⁷ 1661 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within ⁵⁸ 1662 Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- ⁵⁹ 1663 3624460404 	48	1653	http://conspect.nl/pdf/Our Common Future-Brundtland Report 1987.pdf.
 Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan, 1656 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel 1657 1658 1658 1658 1659 1659 1660 1659 1661 1661 1662 1662 1663 1663 1664 1657 1661 1665 1660 1662 1663 1661 1663 1662 1663 1664 1664 1665 1665 1665 1666 1666 1667 1661 1667 1661 1662 1663 1664 1664 1665 1665 1664 1665 1665 1664 1665 1665 1665 1665 1666 1666 1667 1661 1667 1661 1662 1663 1664 1664 1664 1665 1665 1665 1666 1666 1666 1667 1668 1668 1669 1663 1664 1664 1664 1665 1664 1665 1665 1664 1664 1665 1665 1666 1666 1667 1668 1668 1669 1663 1669 1663 1660 1663 1664 1664 1664 1664 1665 1665 1666 1666 1667 1668 1668 1668 1669 1669 1669 1663 1660 1663 1660 1663 1661 1661 1662 1663 1664 1664 1665 1665 1665 1665 1666 1666 1667 1668 1668 1669 1669 1669 <li< td=""><td>49</td><td>1654</td><td>Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for</td></li<>	49	1654	Uwasu, M., Hara, K., Kobayashi, H., Center for Environmental Innovation Design for
 ⁵¹ 1656 2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel ⁵² 1657 Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 ⁵⁴ 1658 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach ⁵⁵ 1659 to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, ⁵⁶ 1660 363–375. https://doi.org/10.1016/j.eneco.2015.12.018 ⁵⁷ 1661 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within ⁵⁸ 1662 Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- ⁵⁰ 1663 3624460404 	50	1655	Sustainability (CEIDS), Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan,
 ⁵² 1657 Data. Int, J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626 ⁵⁴ 1658 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach ⁵⁵ 1659 to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, ⁵⁶ 1660 363–375. https://doi.org/10.1016/j.eneco.2015.12.018 ⁵⁷ 1661 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within ⁵⁸ 1662 Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- ⁵⁹ 1663 3624460404 	51	1656	2014. Analysis of Energy Consumption Patterns and Climate Effects Using Panel
 Valadkhani, A., Roshdi, I., Smyth, R., 2016. A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 363–375. https://doi.org/10.1016/j.eneco.2015.12.018 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- 3624460404 	52 52	1657	Data. Int. J. Autom. Technol. 8, 626–633. https://doi.org/10.20965/ijat.2014.p0626
 to measure efficiency changes in the world's major polluters. ENERGY Econ. 54, 1660 1661 1662 1662 1663 1663 1663 1664 1664 1665 1665 1666 1666 1666 1667 1668 1668 1669 1663 1669 1663 1660 1600 160	55 54	1658	Valadkhani, A., Roshdi, I., Smyth, R., 2016, A multiplicative environmental DEA approach
56 1660 363-375. https://doi.org/10.1016/j.eneco.2015.12.018 57 1661 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within 58 1662 Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- 60 3624460404	55	1659	to measure efficiency changes in the world's major polluters. ENERGY Econ. 54
 van den Bergh, J.C.J.M., Kallis, G., 2012a. Growth, A-Growth or Degrowth to Stay within Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- 3624460404 	56	1660	363+375. https://doi.org/10.1016/i.eneco.2015.12.018
 ⁵⁸ 1662 ⁵⁹ 1663 ⁶⁰ 1663 ⁶¹ Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021- ⁶⁰ 1663 ⁶¹ 3624460404 	57	1661	van den Bergh ICIM Kallis G 2012a Growth A-Growth or Degrowth to Stay within
⁵⁹ 1663 3624460404	58	1662	Planetary Boundaries? I Fcon Issues 46 909_920 https://doi.org/10.2753/IFI0021_
60 1000 100101	59	1663	3624460404
	60	1005	

1					
2					
3	1664	van den Bergh, J.C.J.M., Kallis, G., 2012b. Growth, A-Growth or Degrowth to Stay within			
4	1665	Planetary Boundaries? J. Econ. Issues 46, 909–920. https://doi.org/10.2753/JEI0021-			
5	1666	3624460404			
7	1667	Vehmas, J., Kaivo-oja, J., Luukkanen, J., 2003. Global trends of linking environmental stress			
, 8	1668	and economic growth. Total primary energy supply and CO2 emissions in the			
9	1669	European Union, Japan, USA, China, India and Brazil, Finland Futures Research			
10	1670	Center, Turku			
11	1671	Vehmas I Luukkanen I Kaivo-oia I 2007 Linking analyses and environmental Kuznets			
12	1672	curves for aggregated material flows in the FU Mater. Flow Anal Mater Flow			
13	1672	Manag 15, 1662, 1673, https://doi.org/10.1016/j.jolopro.2006.08.010			
14	1674	Valago Formándoz B. Domos Mortán I. Ciampiotro M. 2015. The anomy matchalium of			
15	10/4	China and India between 1071 and 2010. Studying the hifunation. Denous Station			
16	10/3	China and India between 1971 and 2010: Studying the bifurcation. Kenew, Sustain.			
1/ 10	16/6	Energy Rev. 41, 1052–1066. https://doi.org/10.1016/j.rser.2014.08.065			
10	16//	Vita, G., Hertwich, E., Stadler, K., Wood, R., 2018. Connecting global emissions to			
20	1678	fundamental human needs and their satisfaction. Environ. Res. Lett.			
20	1679	https://doi.org/10.1088/1748-9326/aae6e0			
22	1680	Vlahinic-Dizdarevic, N., Segota, A., 2012. Total-factor energy efficiency in the EU countries.			
23	1681	Zb. Rad. Ekon. Fak. U RIJECI-Proc. Rij. Fac. Econ. 30, 247–265.			
24	1682	Vollebergh, H.R.J., Melenberg, B., Dijkgraaf, E., 2009. Identifying reduced-form relations			
25	1683	with panel data: The case of pollution and income. J. Environ. Econ. Manag. 58, 27–			
26	1684	42. https://doi.org/10.1016/j.jeem.2008.12.005			
27	1685	Vuta, Mariana, Vuta, Mihai, Enciu, A., Cioaca, SI., 2018. ASSESSMENT OF THE			
28	1686	CIRCULAR ECONOMY'S IMPACT IN THE EU ECONOMIC GROWTH.			
29	1687	AMFITEATRU Econ. 20, 248–261, https://doi.org/10.24818/EA/2018/48/248			
30 21	1688	Wang H Hashimoto S Yue O Moriguchi Y Lu Z 2013 Decoupling Analysis of Four			
31	1689	Selected Countries: China Russia Japan and the United States during 2000-2007 J			
33	1600	Ind Ecol 17 618 620 https://doi.org/10.1111/jiec.12005			
34	1601	Wang P. C. Lee V. M. Chen. C. V. 2014 Estimation of Persource Productivity and			
35	1607	Efficiency An Extended Exclustion of Systemability Deleted to Material Elevy			
36	1092	Efficiency: All Extended Evaluation of Sustainability Related to Material Flow.			
37	1693	SUSTAINABILITY 6, 60/0–608/. https://doi.org/10.3390/su60960/0			
38	1694	Wang, X., Zhang, M., Nathwani, J., Yang, F., 2019. Measuring Environmental Efficiency			
39	1695	through the Lens of Technology Heterogeneity: A Comparative Study between China			
40	1696	and the G20. SUSTAINABILITY 11. https://doi.org/10.3390/su11020461			
41	1697	Wang, Z., Feng, C., Chen, J., Huang, J., 2017. The driving forces of material use in China: An			
42 42	1698	index decomposition analysis. Resour. POLICY 52, 336–348.			
45 11	1699	https://doi.org/10.1016/j.resourpol.2017.04.011			
45	1700	Ward, J.D., Sutton, P.C., Werner, A.D., Costanza, R., Mohr, S.H., Simmons, C.T., 2016. Is			
46	1701	Decoupling GDP Growth from Environmental Impact Possible? PLOS ONE 11.			
47	1702	https://doi.org/10.1371/journal.pone.0164733			
48	1703	Warr, B., 2011. Resource efficiency as a driver of growth: The case of Japan. Fuel Effic. 35–			
49	1704	66.			
50	1705	Warr, B., Avres, R., Eisenmenger, N., Krausmann, F., Schandl, H., 2010, Energy use and			
51	1706	economic development: A comparative analysis of useful work supply in Austria.			
52	1707	Japan the United Kingdom and the US during 100 years of economic growth Ecol			
53	1708	Econ 69 1904–1917 https://doi.org/10.1016/i.ecolecon 2010.03.021			
54 55	1700	Warr B Avres R II 2012 Useful work and information as drivers of economic growth			
56	1710	East East 72, 02, 102, https://doi.org/10.1016/j.acologon.2011.00.006			
57	1711	Warr D. Sahandi H. Auros D.U. 2009 Long town trands in recovery consumption			
58	1/11	wait, D., Schandi, H., Ayres, K.U., 2008. Long term trends in resource exergy consumption			
59	1/12	and useful work supplies in the UK, 1900 to 2000. Ecol. Econ. 68, 126–140.			
60	1/15	nups://doi.org/10.1010/j.ecolecon.2008.02.019			
		48			

1		
2		
3 ⊿	1714	Warr, B.S., Ayres, R.U., 2010. Evidence of causality between the quantity and quality of
5	1715	energy consumption and economic growth. ENERGY 35, 1688–1693.
6	1716	https://doi.org/10.1016/j.energy.2009.12.017
7	1717	Watari, T., McLellan, B.C., Giurco, D., Dominish, E., Yamasue, E., Nansai, K., 2019. Total
8	1718	material requirement for the global energy transition to 2050: A focus on transport and
9	1719	electricity. Resour. Conserv. Recycl. 148, 91–103.
10	1720	https://doi.org/10.1016/j.resconrec.2019.05.015
11	1721	Weinzettel, J., Kovanda, J., 2011. Structural Decomposition Analysis of Raw Material
12	1722	Consumption: The Case of the Czech Republic. J. Ind. Ecol. 15, 893–907.
14	1723	https://doi.org/10.1111/j.1530-9290.2011.00378.x
15	1724	Weisz, H., Krausmann, F., Amann, C., Eisenmenger, N., Erb, KH., Hubacek, K., Fischer-
16	1725	Kowalski, M., 2006. The physical economy of the European Union: Cross-country
17	1726	comparison and determinants of material consumption. Ecol. Econ. 58, 676–698.
18	1727	Wenzlik, M., Eisenmenger, N., Schaffartzik, A., 2015. What Drives Austrian Raw Material
19	1728	Consumption?: A Structural Decomposition Analysis for the Years 1995 to 2007. J.
20	1729	Ind. Ecol. 19, 814–824, https://doi.org/10.1111/jiec.12341
21	1730	West J. Schandl H. 2018 Explanatory Variables for National Socio-Metabolic Profiles and
22	1731	the Question of Forecasting National Material Flows in a Globalized Economy J Ind
23 24	1732	Fcol 22 $1451-1464$ https://doi.org/10.1111/jiec.12671
2 4 25	1733	West I Schandl H 2013 Material use and material efficiency in Latin America and the
26	173/	Caribbean Ecol Econ 04 10 27 https://doi.org/10.1016/j.ecolecon 2013.06.015
27	1735	West I Schandl H Hevenge S. Chen S. 2013 Resource Efficiency: Economics and
28	1726	Outlook for Chinase Version)
29	1/30	West L Schendl II. Knymmen E. Kovende I. U.I. T. 2014. Betterne of change in
30	1/3/	west, J., Schandl, H., Krausmann, F., Kovanda, J., Hak, T., 2014. Patterns of change in
31	1/38	material use and material efficiency in the successor states of the former Soviet Union.
32	1739	Ecol. Econ. 105, 211–219. https://doi.org/10.1016/j.ecolecon.2014.06.013
33 24	1740	Wiedmann, T., Lenzen, M., 2018. Environmental and social footprints of international trade.
34	1741	Nat. Geosci. 11, 314–321. https://doi.org/10.1038/s41561-018-0113-9
36	1742	Wiedmann, T. O., Schandl, H., Lenzen, M., Moran, D., Suh, S., West, J., Kanemoto, K.,
37	1743	2015. The material footprint of nations. Proc. Natl. Acad. Sci. 112, 6271–6276.
38	1744	https://doi.org/10.1073/pnas.1220362110
39	1745	Wiedmann, Thomas O., Schandl, H., Lenzen, M., Moran, D., Suh, S., West, J., Kanemoto, K.,
40	1746	2015a. The material footprint of nations. Proc. Natl. Acad. Sci. U. S. A. 112, 6271–
41	1747	6276. https://doi.org/10.1073/pnas.1220362110
42	1748	Wiedmann, Thomas O., Schandl, H., Lenzen, M., Moran, D., Suh, S., West, J., Kanemoto, K.,
43	1749	2015b. The material footprint of nations. Proc. Natl. Acad. Sci. 112, 6271-6276.
44 45	1750	https://doi.org/10.1073/pnas.1220362110
46	1751	Wood, R., Grubb, M., Anger-Kraavi, A., Pollitt, H., Rizzo, B., Alexandri, E., Stadler, K.,
47	1752	Moran, D., Hertwich, E., Tukker, A., 2019a. Beyond peak emission transfers:
48	1753	historical impacts of globalization and future impacts of climate policies on
49	1754	international emission transfers. Clim. Policy 0, 1–14.
50	1755	https://doi.org/10.1080/14693062.2019.1619507
51	1756	Wood, R., Lenzen, M., Foran, B., 2009, A Material History of Australia: Evolution of
52	1757	Material Intensity and Drivers of Change. J. Ind. Ecol. 13, 847–862.
53 54	1758	https://doi.org/10.1111/i.1530-9290.2009.00177.x
55	1759	Wood R Moran D.D. Rodrigues LF.D. Stadler K 2019b Variation in trends of
56	1760	consumption based carbon accounts Sci Data 6 1_9 https://doi.org/10.1038/s41597-
57	1761	010_0102_v
58	1767	Wood P. Stadler K. Simas M. Bulavekava T. Gilium S. Lutter S. Tukker A. 2019a
59	1762	Growth in Environmental Ecotorists and Environmental Impacts Embedied in Trade
60	1703	Brown in Environmental Poolprints and Environmental impacts Enfounded in Trade:
		49

1						
2						
3	1764	Resource Efficiency Indicators from EXIOBASE3. J. Ind. Ecol. 22, 553–564.				
4	1765	https://doi.org/10.1111/jiec.12735				
с С	1766	Wood, R., Stadler, K., Simas, M., Bulavskaya, T., Giljum, S., Lutter, S., Tukker, A., 2018b.				
7	1767	Growth in Environmental Footprints and Environmental Impacts Embodied in Trade:				
, 8	1768	Resource Efficiency Indicators from EXIOBASE3. J. Ind. Ecol. 22, 553–564.				
9	1769	https://doi.org/10.1111/jiec.12735				
10	1770	World Bank 2019a World Bank Open Data [WWW Document] URL				
11	1771	https://data worldbank.org/				
12	1772	World Bank 2010b World Bank Country and Londing Groups [WWW Document] World				
13	1//2	Den's UDL https://detabala.deals.worldher/s.grg/lmesula.deala.as/outicles/0006510				
14	1//3	Bank. URL https://dataneipdesk.worldbank.org/knowledgebase/articles/900519-				
15	1//4	world-bank-country-and-lending-groups (accessed 11.19.19).				
16	1775	World Bank (Ed.), 2012. Inclusive green growth: the pathway to sustainable development.				
17	1776	World Bank, Washington, DC.				
18	1777	Wu, Z., Schaffartzik, A., Shao, Q., Wang, D., Li, G., Su, Y., Rao, L., 2019. Does economic				
19	1778	recession reduce material use? Empirical evidence based on 157 economies				
20	1779	worldwide. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2019.01.015				
21 22	1780	Xu, M., Zhang, T., 2007. Material Flows and Economic Growth in Developing China. J. Ind.				
22	1781	Ecol. 11, 121–140. https://doi.org/10.1162/jiec.2007.1105				
23	1782	Xu, X., Zhao, T., Liu, N., Kang, J., 2014. Changes of energy-related GHG emissions in				
25	1783	China: An empirical analysis from sectoral perspective. Appl. ENERGY 132, 298–				
26	1784	307 https://doi.org/10.1016/j.apenergy 2014.07.025				
27	1785	Vabar H. Hara K. Uwasu M. 2012 Comparative assessment of the co-evolution of				
28	1786	anvironmental indicator systems in Japan and China Pasour, Conserv. Pozval, 61				
29	1707	42 51 https://doi.org/10.1016/i.regogerreg.2011.12.012				
30	1/0/	45-51. https://doi.org/10.1010/j.resconrec.2011.12.012				
31	1/88	Yang, X., Lou, F., Sun, M., Wang, R., Wang, Y., 2017. Study of the relationship between				
32	1789	greenhouse gas emissions and the economic growth of Russia based on the				
33	1790	Environmental Kuznets Curve. Appl. ENERGY 193, 162–173.				
34 25	1791	https://doi.org/10.1016/j.apenergy.2017.02.034				
36	1792	Yao, S., Zhang, S., Zhang, X., 2019. Renewable energy, carbon emission and economic				
37	1793	growth: A revised environmental Kuznets Curve perspective. J. Clean. Prod. 235,				
38	1794	1338–1352. https://doi.org/10.1016/j.jclepro.2019.07.069				
39	1795	Yu, H., 2012. The influential factors of China's regional energy intensity and its spatial				
40	1796	linkages: 1988-2007. ENERGY POLICY 45, 583–593.				
41	1797	https://doi.org/10.1016/i.enpol.2012.03.009				
42	1798	Yu, Y., Chen, D., Zhu, B., Hu, S., 2013, Eco-efficiency trends in China, 1978-2010:				
43	1799	Decoupling environmental pressure from economic growth Ecol Indic 24 177–184				
44	1800	https://doi.org/10.1016/j.ecolind.2012.06.007				
45	1800	Zaman K Shamsuddin S Ahmad M 2017 Energy water food navus under financial				
46	1001	Zaman, K., Shamsudum, S., Ammad, W., 2017. Energy-water-rood nexus under manetar				
4/	1002	Constraint environment, good, the bad, and the ugiy sustainability feforms in sub-				
48 40	1803	Sanaran African countries. Environ. Sci. Pollut. Res. 24, 13358–13372.				
49 50	1804	https://doi.org/10.100//s11356-01/-8961-1				
51	1805	Zhao, JL., 2017. Analysis of eco-efficiency based on material flow. J. Interdiscip. Math. 20,				
52	1806	649–658. https://doi.org/10.1080/09720502.2016.1259857				
53	1807					
54						
55						
56						
57						
58						
59						
60						
		50				