84 research outputs found

    A review on the electroencephalography markers of Stroop executive control processes

    Get PDF
    The present article on executive control addresses the issue of the locus of the Stroop effect by examining neurophysiological components marking conflict monitoring, interference suppression, and conflict resolution. Our goal was to provide an overview of a series of determining neurophysiological findings including neural source reconstruction data on distinct executive control processes and sub-processes involved in the Stroop task. Consistently, a fronto-central N2 component is found to reflect conflict monitoring processes, with its main neural generator being the anterior cingulate cortex (ACC). Then, for cognitive control tasks that involve a linguistic component like the Stroop task, the N2 is followed by a centro-posterior N400 and subsequently a late sustained potential (LSP). The N400 is mainly generated by the ACC and the prefrontal cortex (PFC) and is thought to reflect interference suppression, whereas the LSP plausibly reflects conflict resolution processes. The present overview shows that ERP constitute a reliable methodological tool for tracing with precision the time course of different executive processes and sub-processes involved in experimental tasks involving a cognitive conflict. Future research should shed light on the fine-grained mechanisms of control respectively involved in linguistic and non-linguistic tasks

    Prosody-assisted head-driven access to spoken German compounds

    No full text
    Auditory processing of German 2-noun compound words was investigated with 328 participants in 4 experiments by monitoring semantic priming effects of the left constituents of the compound words. The authors demonstrated that there is no primacy of the left constituents in accessing auditorily presented German compound words in the mental lexicon. A clear priming effect of left constituents occurred only for compound words with a transparent right constituent that is the head of compound words in Germanic languages. The data suggest that the access to German compounds in the auditory domain involves 2 temporally overlapping routes: direct and decompositional. The prosodic structure (i.e., the duration) of the first morphemes of compound words appears to be a determining factor for activation of the decompositional route

    HIV type 1 that select tRNA(His) or tRNA(Lys1,2) as primers for reverse transcription exhibit different infectivities in peripheral blood mononuclear cells.

    No full text
    The replication in human peripheral blood mononuclear cells (PBMC) of unique HIV-1 that select tRNA(His) or tRNA(Lys1,2) for reverse transcription was compared to the wild-type virus that uses tRNA(Lys,3). HIV-1 with only the primer-binding site (PBS) changed to be complementary to these alternative tRNAs initially replicated more slowly than the wild-type virus in PBMC, although all viruses eventually reached equivalent growth as measured by p24 antigen. Viruses with only a PBS complementary to the 3' terminal 18 nucleotides of tRNA(His) or tRNA(Lys1,2) reverted to use tRNA(Lys3). HIV-1 with mutations in the U5-PBS to allow selection of tRNA(His) and tRNA(Lys1,2) following long-term growth in SupT1 cells were also evaluated for growth and PBS stability following replication in PBMC. Although both viruses initially grew slower than wild type, they maintained a PBS complementary to the starting tRNA and did not revert to the wild-type PBS after long-term culture in PBMC. Analysis of the U5-PBS regions following long-term culture in PBMC also revealed few changes from the starting sequences. The virus that stably used tRNA(His) was less infectious than the wild type. In contrast, the virus that stably used tRNA(Lys1,2) evolved to be as infectious as wild-type virus following extended culture in PBMC. The results of these studies highlight the impact of the host cell on the tRNA primer selection process and subsequent infectivity of HIV-1

    The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs

    Get PDF
    Replication of human immunodeficiency virus (HIV) requires base pairing of the reverse transcriptase primer, human tRNALys3, to the viral RNA. Although the major complementary base pairing occurs between the HIV primer binding sequence (PBS) and the tRNA's 3′-terminus, an important discriminatory, secondary contact occurs between the viral A-rich Loop I, 5′-adjacent to the PBS, and the modified, U-rich anticodon domain of tRNALys3. The importance of individual and combined anticodon modifications to the tRNA/HIV-1 Loop I RNA's interaction was determined. The thermal stabilities of variously modified tRNA anticodon region sequences bound to the Loop I of viral sub(sero)types G and B were analyzed and the structure of one duplex containing two modified nucleosides was determined using NMR spectroscopy and restrained molecular dynamics. The modifications 2-thiouridine, s2U34, and pseudouridine, Ψ39, appreciably stabilized the interaction of the anticodon region with the viral subtype G and B RNAs. The structure of the duplex results in two coaxially stacked A-form RNA stems separated by two mismatched base pairs, U162•Ψ39 and G163•A38, that maintained a reasonable A-form helix diameter. The tRNA's s2U34 stabilized the interaction between the A-rich HIV Loop I sequence and the U-rich anticodon, whereas the tRNA's Ψ39 stabilized the adjacent mismatched pairs

    A Flavonoid, Luteolin, Cripples HIV-1 by Abrogation of Tat Function

    Get PDF
    Despite the effectiveness of combination antiretroviral treatment (cART) against HIV-1, evidence indicates that residual infection persists in different cell types. Intensification of cART does not decrease the residual viral load or immune activation. cART restricts the synthesis of infectious virus but does not curtail HIV-1 transcription and translation from either the integrated or unintegrated viral genomes in infected cells. All treated patients with full viral suppression actually have low-level viremia. More than 60% of treated individuals also develop minor HIV-1 –associated neurocognitive deficits (HAND) due to residual virus and immune activation. Thus, new therapeutic agents are needed to curtail HIV-1 transcription and residual virus. In this study, luteolin, a dietary supplement, profoundly reduced HIV-1 infection in reporter cells and primary lymphocytes. HIV-1inhibition by luteolin was independent of viral entry, as shown by the fact that wild-type and VSV–pseudotyped HIV-1 infections were similarly inhibited. Luteolin was unable to inhibit viral reverse transcription. Luteolin had antiviral activity in a latent HIV-1 reactivation model and effectively ablated both clade-B- and -C -Tat-driven LTR transactivation in reporter assays but had no effect on Tat expression and its sub-cellular localization. We conclude that luteolin confers anti–HIV-1 activity at the Tat functional level. Given its biosafety profile and ability to cross the blood-brain barrier, luteolin may serve as a base flavonoid to develop potent anti–HIV-1 derivatives to complement cART

    Second Language Processing Shows Increased Native-Like Neural Responses after Months of No Exposure

    Get PDF
    Although learning a second language (L2) as an adult is notoriously difficult, research has shown that adults can indeed attain native language-like brain processing and high proficiency levels. However, it is important to then retain what has been attained, even in the absence of continued exposure to the L2—particularly since periods of minimal or no L2 exposure are common. This event-related potential (ERP) study of an artificial language tested performance and neural processing following a substantial period of no exposure. Adults learned to speak and comprehend the artificial language to high proficiency with either explicit, classroom-like, or implicit, immersion-like training, and then underwent several months of no exposure to the language. Surprisingly, proficiency did not decrease during this delay. Instead, it remained unchanged, and there was an increase in native-like neural processing of syntax, as evidenced by several ERP changes—including earlier, more reliable, and more left-lateralized anterior negativities, and more robust P600s, in response to word-order violations. Moreover, both the explicitly and implicitly trained groups showed increased native-like ERP patterns over the delay, indicating that such changes can hold independently of L2 training type. The results demonstrate that substantial periods with no L2 exposure are not necessarily detrimental. Rather, benefits may ensue from such periods of time even when there is no L2 exposure. Interestingly, both before and after the delay the implicitly trained group showed more native-like processing than the explicitly trained group, indicating that type of training also affects the attainment of native-like processing in the brain. Overall, the findings may be largely explained by a combination of forgetting and consolidation in declarative and procedural memory, on which L2 grammar learning appears to depend. The study has a range of implications, and suggests a research program with potentially important consequences for second language acquisition and related fields

    How do we account for the absence of "change deafnes"?

    No full text
    O'Regan & Noë (O&N) argue that there is no need of internal, more or less picture-like, representation of the visual world in the brain. They propose a new approach in which vision is a mode of exploration of the world that is mediated by knowledge of sensorimotor contingencies. Data obtained in “change blindness” experiments support this assumption
    corecore