3,171 research outputs found
Additional crossing of the Clarence River at Grafton: flood impact, levee upgrade, and structural considerations
The Clarence River catchment, on the far north coast of New South Wales (NSW), is one of the largest catchments on the east coast of Australia, with an area of approximately 20,000km2. The lower Clarence River floodplain spans 500km2, within which lie the towns of Grafton and Maclean. These towns are home to over 20,000 residents collectively and serve as a rural centre for the surrounding agricultural lands. Both Grafton and Maclean are protected by levee systems which have been developed over time as a response to previous floods in the region. Roads and Maritime Services (RMS) is currently investigating options for an additional crossing of the Clarence River at Grafton to address short-term and long-term transport needs. All upgrade options for an additional crossing of the Clarence River will increase flood levels. RMS intends to maintain the current level of immunity and mitigate any adverse impact from piers and structures within the Clarence River by raising current levees. This paper draws upon and consolidates some of the findings from the options analysis to investigate considerations associated with spanning a 600m section of the Clarence River, mitigation of flood impacts, and modifications proposed to the existing levee systems
Force Dependence of the Michaelis Constant in a Two-State Ratchet Model for Molecular Motors
We present a quantitative analysis of recent data on the kinetics of ATP
hydrolysis, which has presented a puzzle regarding the load dependence of the
Michaelis constant. Within the framework of coarse grained two-state ratchet
models, our analysis not only explains the puzzling data, but provides a
modified Michaelis law, which could be useful as a guide for future
experiments.Comment: 4 pages, 3 eps figures, accepted for publication on Physical Review
Letter
Motor-driven Dynamics of Cytoskeletal FIlaments in Motility Assays
We model analytically the dynamics of a cytoskeletal filament in a motility
assay. The filament is described as rigid rod free to slide in two dimensions.
The motor proteins consist of polymeric tails tethered to the plane and modeled
as linear springs and motor heads that bind to the filament. As in related
models of rigid and soft two-state motors, the binding/unbinding dynamics of
the motor heads and the dependence of the transition rates on the load exerted
by the motor tails play a crucial role in controlling the filament's dynamics.
Our work shows that the filament effectively behaves as a self-propelled rod at
long times, but with non-Markovian noise sources arising from the coupling to
the motor binding/unbinding dynamics. The effective propulsion force of the
filament and the active renormalization of the various friction and diffusion
constants are calculated in terms of microscopic motor and filament parameters.
These quantities could be probed by optical force microscopy.Comment: 13 pages, 8 figures, 1 Tabl
A Microscopic Mechanism for Muscle's Motion
The SIRM (Stochastic Inclined Rods Model) proposed by H. Matsuura and M.
Nakano can explain the muscle's motion perfectly, but the intermolecular
potential between myosin head and G-actin is too simple and only repulsive
potential is considered. In this paper we study the SIRM with different complex
potential and discuss the effect of the spring on the system. The calculation
results show that the spring, the effective radius of the G-actin and the
intermolecular potential play key roles in the motion. The sliding speed is
about calculated from the model which well agrees with
the experimental data.Comment: 9 pages, 6 figure
Pressure-temperature phase diagram of ferromagnetic superconductors
The symmetry approach to the description of the (P,T) phase diagram of
ferromagnet superconductors with triplet pairing is developed. Taking into
account the recent experimental observations made on UCoGe it is considered the
case of a crystal with orthorhombic structure and strong spin-orbital coupling.
It is shown that formation of ferromagnet superconducting state from a
superconducting state is inevitably accompanied by the first order type
transition.Comment: 4 pages, 1 figur
Prevalence of somatisation as a determinant of burnout amongst staff working in drug and alcohol services
Purpose: This study explored the prevalence of somatisation as a determinant of burnout amongst drug and alcohol staff in the UK.
Design/methodology/approach: The study employed a cross-sectional design utilising a self-completion online questionnaire. Data was collected from substance misuse workers across England and Wales. 165 responses were eligible for analysis, yielding a response rate of 5%. Burnout and somatization were measured with Maslach’s Burnout Inventory and the Physical Symptoms Inventory.
Findings: The prevalence of somatic symptoms was relatively low in the sample studied. The reported levels of burnout were moderate. Personal accomplishment remained high in the sample. There was a strong association between burnout and incidence of stress related somatic symptoms, with higher levels of burnout correlating with multiple symptoms.
Research limitations/implications: It was not possible to determine the extent of non-response bias, as at the time of the study there was no information available relating to the characteristics of drug and alcohol staff in the selected services. Therefore, as the response rate was very low (5%) it was recognised that non-response bias might have affected the findings, in such way that non-respondents may have differed in their experiences of work stress, satisfaction, burnout and health outcomes.
Practical implications: Despite the limitations, the study provided practical information relating to burnout vulnerability and associated physical symptoms in this specific occupational group. These findings can support employers to address staff wellbeing with a view to prevent burnout and reduce existing levels of burnout and related somatic symptoms, and improve job performance, job satisfaction, and staff retention through making appropriate adjustments, such as developing staff-wellbeing programmes. These adjustments could potentially contribute to improvement in substance misuse practice, through maintenance of healthy and satisfied workforce.
Social implications:
Originality/value: There is very few studies looking at burnout in drug and alcohol staff. This study is also novel in a way that it reveals correlations between a variety of specific stress related physical symptoms and the three components of burnout
Brownian molecular motors driven by rotation-translation coupling
We investigated three models of Brownian motors which convert rotational
diffusion into directed translational motion by switching on and off a
potential. In the first model a spatially asymmetric potential generates
directed translational motion by rectifying rotational diffusion. It behaves
much like a conventional flashing ratchet. The second model utilizes both
rotational diffusion and drift to generate translational motion without spatial
asymmetry in the potential. This second model can be driven by a combination of
a Brownian motor mechanism (diffusion driven) or by powerstroke (drift driven)
depending on the chosen parameters. In the third model, elements of both the
Brownian motor and powerstroke mechanisms are combined by switching between
three distinct states. Relevance of the model to biological motor proteins is
discussed.Comment: 11 pages, 8 figure
One dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibre
A quantum chain model of many molecule motors is proposed as a mathematical
physics theory on the microscopic modeling of classical force-velocity relation
and tension transients of muscle fibre. We proposed quantum many-particle
Hamiltonian to predict the force-velocity relation for the slow release of
muscle fibre which has no empirical relation yet, it is much more complicate
than hyperbolic relation. Using the same Hamiltonian, we predicted the
mathematical force-velocity relation when the muscle is stimulated by
alternative electric current. The discrepancy between input electric frequency
and the muscle oscillation frequency has a physical understanding by Doppler
effect in this quantum chain model. Further more, we apply quantum physics
phenomena to explore the tension time course of cardiac muscle and insect
flight muscle. Most of the experimental tension transients curves found their
correspondence in the theoretical output of quantum two-level and three-level
model. Mathematically modeling electric stimulus as photons exciting a quantum
three-level particle reproduced most tension transient curves of water bug
Lethocerus Maximus.Comment: 16 pages, 12 figures, Arguments are adde
- …