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We model analytically the dynamics of a cytoskeletal filament in a motility assay. The filament
is described as rigid rod free to slide in two dimensions. The motor proteins consist of polymeric
tails tethered to the plane and modeled as linear springs and motor heads that bind to the filament.
As in related models of rigid and soft two-state motors, the binding/unbinding dynamics of the
motor heads and the dependence of the transition rates on the load exerted by the motor tails play
a crucial role in controlling the filament’s dynamics. Our work shows that the filament effectively
behaves as a self-propelled rod at long times, but with non-Markovian noise sources arising from the
coupling to the motor binding/unbinding dynamics. The effective propulsion force of the filament
and the active renormalization of the various friction and diffusion constants are calculated in terms
of microscopic motor and filament parameters. These quantities could be probed by optical force
microscopy.

There has recently been renewed interest in motility as-
says where semiflexible actin filaments are driven to slide
over a “bed” of myosin molecular motors. Recent exper-
iments at high actin density have revealed that the col-
lective behavior of this simple active system is very rich,
with propagating density waves and large scale-swirling
motion [1, 2], not unlike those observed in dense bacterial
suspensions [3]. In an actin motility assay the polymeric
tails of myosin motor proteins are anchored to a surface,
while their heads can bind to actin filaments [4]. Once
bound, the motor head exerts forces and drives the fila-
ment’s motion. This system provides possibly the sim-
plest realization of an active system that allows detailed
semi-microscopic modeling.

Stochastic models of the collective action of motor pro-
teins on cytoskeletal filaments in one dimension have
been considered before by several authors, with empha-
sis on the acto-myosin system in muscles and on the mi-
totic spindle [5]. When working against an elastic load,
the motor assemblies have been shown to drive periodic
spontaneous activity in the form of oscillatory instabil-
ities, which in turn have been observed ubiquitously in
a variety of biological systems [6–10]. These instabilities
arise in the model from the collective action of the mo-
tors and the breaking of detailed balance in their dynam-
ics and manifest themselves as a negative effective fric-
tion of the filament. When free to slide under the action
of an external force, the filament can exhibit bistability
that manifests itself as hysteresis in the force velocity-
curve [11, 12]. A large body of earlier work has mod-
eled the motors as rigid two-state systems attached to
a backbone and bound by the periodic potential exerted
by the filament on the motor head [6, 11, 13]. In a sec-
ond class of models the motors have been modeled as
flexible springs [14, 15]. The motor heads bind to the fil-
ament and unbind at a load-dependent rate. In this case
the dynamic instability arises from the dependence of the
unbinding rate on the tension exerted by springs [16–18].

Recent work by Guérin et al. [19] has generalized the two-
state model by taking into account the flexibility of the
motors, showing that both models can be obtained in a
unified manner for different values of a parameter that
compares the stiffness of the motors to the stiffness of the
periodic potential provided by the filament.

In this paper we consider a model of a rigid filament
free to slide in two dimensions under the driving action of
motor proteins uniformly tethered to a two-dimensional
plane. The model considered is a modification of the
“crossbridge” model first introduced by Huxley in 1957
to describe motor-induced contractile behavior of muscle
fibers [20]. The motor proteins’ polymeric tails are mod-
eled as linear springs that pull back on the bound motor
heads. After attachment, the motor heads slide along the
filament at a velocity that depends on the load exerted by
the flexible motor tails. The sliding and subsequent de-
tachment play the role of the motor’s power stroke. The
binding/unbinding dynamics of the motor heads and the
dependence of the transition rates on the load exerted
by the motor tails play a crucial role in controlling the
dynamics of the fie, effectively yielding non-Markovian
noise sources on the filament. Related models have been
studied numerically [14, 15, 21]. The results presented
here are obtained by generalizing to two dimensions the
mean field approximation for the motor dynamics de-
scribed for instance in Ref. [7]. The mean-field theory
neglects convective nonlinearities in the equation for the
probability of bound motors and correlations in the mo-
tors on/off dynamics, but it is expected to be adequate
on time scales large compared to that of the motor on/off
dynamics and for a large number of motors. This is sup-
ported by the results of [11] for a model of rigid two-state
motors.

We begin by revisiting the one-dimensional problem.
We discuss the steady-state response of the filament to
an external force and present new results on the dynam-
ics of fluctuations about the sliding steady state. The
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force-velocity curve is evaluated analytically and exhibits
bistability and hysteresis, as obtained in Ref. [11] for a
rigid two-state motor model. A new result is an expres-
sion for the effective propulsion force on the filament due
to the motors in terms of physical parameters character-
izing the motor proteins. Next, we analyze the fluctu-
ations about the steady state by evaluating the mean-
square displacement of the filament. We show that the
coupling to the motor binding/unbinding dynamics yields
non-Markovian noise sources with time correlations con-
trolled by the duration of the motors’ binding/unbindig
cycle. Since the filament has a finite motor-induced ve-
locity even in the absence of applied force, the mean-
square displacement is ballistic at long time. The fluctu-
ations of displacement about this sliding state are, how-
ever, diffusive at long times with an enhanced diffusion
constant. This enhancement is controlled by the depen-
dence of the motors’ unbinding rate on the load exerted
on the bound motors’ heads by the tethered tails and
vanishes for unloaded motors.

We then consider the case of a filament in two dimen-
sions, to analyze the effect of the coupling of transla-
tional and rotational degrees of freedom in controlling
the dynamics. At steady state, motors yield an effective
propulsion force along the long axis of the filament, as in
one dimension, but no effective torque. This is in con-
trast to phenomenological models considered in the lit-
erature [22] that have considered the dynamics of active
rod-like particles in the presence of both effective inter-
nal forces and torques. As a result, in the steady-state
the filament slides along its long axis and the dynam-
ics in this direction is essentially one dimensional, with
a motor-induced negative friction instability and bista-
bility and hysteresis in the response to an external force.
Motors do enhance both the transverse and the rotational
friction coefficients of the filament. The enhancement
of rotational friction could be probed by measuring the
response to an external torque. Since the finite motor-
induced propulsion is along the filament axis, whose di-
rection is in turn randomized by rotational diffusion, the
mean velocity of the filament is zero in the absence of
external force, unlike in the one-dimensional case. The
mean square displacement is therefore diffusive at long
times, with behavior controlled by the interplay of non-
Markovian effects due to the coupling to motor dynamics
with coupled translational and rotational diffusions. The
filament performs a persistent random walk that consists
of ballistic excursions at the motor-induced propulsion
speed, randomized by both rotational diffusion and the
motor binding/undinding dynamics. The crossover to
the long-time diffusive behavior is controlled by the inter-
play of motor-renormalized diffusion rate and duration of
the motor binding/unbinding cycle. The effective diffu-
sion constant is calculated in terms of microscopic motor
and filament parameters. Its dependence on activity, as
characterized by the rate of ATP consumption, could be
probed in actin assays.

Finally, our work provides a microscopic justification

of a simple model used in the literature [23] that de-
scribes a cytoskeletal filament interacting with motor
proteins tethered to a plane as a “self-propelled” rod,
although it also shows that the effective noise is ren-
dered non-Markovian by the coupling to the motors’
binding/unbing dynamics. It also provides microscopic
expressions for the self-propulsion force and the various
friction coefficients in terms of motor and filament pa-
rameters and shows that this effective model fails beyond
a critical value of motor activity, where the effective fric-
tion changes sign and the filament exhibits bistability and
hysteresis.

I. THE MODEL

In our model the motor proteins are described as com-
posed of polymeric tails attached permanently to a two-
dimensional fixed substrate and motor heads that can
bind reversibly to the filament. Once bound, a motor
head moves along the filament thereby stretching the tail.
This gives rise to a load force on the motor head and on
the filament. Eventually excessive load leads to detach-
ment of the motor head.

A. Filament dynamics

The actin filament is modeled as a rigid polar rod of
length L that can slide in two dimensions. It is described
by the position r of its center of mass and a unit vector
û = (cos(θ), sin(θ)) directed along the rod’s long axis
away from the polar direction of the rod, which is in
turn defined as the direction of motion of bound motors.
In other words, bound motors move along the rod in the
direction −û. In contrast to most previous work [6, 7,
13, 19], and given our interest in modeling actin motility
assays, we assume the substrate is fixed and consider the
dynamics of the filament. Our goal is to understand the
role of the cooperative driving by motors in controlling
the coupled rotational and translational dynamics of the
rod.

The dynamics of the filament is described by coupled
equations for the translational and orientational degrees
of freedom, given by

ζ · ∂tr = Fa + Fext + η(t) , (1a)

ζθ∂tθ = Ta + Text + ηθ(t) . (1b)

Here we have grouped the forces and torques into the
effects due to the motors, i.e. the activity, Fa and Ta,
external forces and torques Fext an Text and the stochas-
tic noise not due to motors. The friction tensor is given
by ζ = ζ‖ûû + ζ⊥

(
δ − ûû

)
with ζ‖ and ζ⊥ the fric-

tion coefficients for motion longitudinal and transverse
to the long direction of the rod, and ζθ is the rotational
friction coefficient. For the case of a long, thin rod of
interest here, ζ‖ = ζ⊥/2. The random force η(t) and
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FIG. 1: The figure shows the four steps of a motor cycle. In
(a) a filament is sliding with velocity v over a uniform density
of unbound motors with tails tethered to the substrate. In
(b) a motor attaches to the filament at a position s0 from the
filament’s mid-point. The stretch of the motor tails at the
time of attachment is neglected. In (c) the motor has walked
towards the polar head of the filament, stretching the tails by
an amount ∆. Finally, in (d) the bound motor detaches and
relaxes instantaneously to its unstretched state. The filament
has undergone a net displacement in the direction opposite to
that of motor motion.

random torque ηθ(t) describe noise in the system, in-
cluding nonthermal noise sources. For simplicity we as-
sume that both η(t) and ηθ(t) describe Gaussian white
noise, with zero mean and correlations 〈ηi(t)ηj(t′)〉 =
2Bijδ(t − t′) and 〈ηθ(t)ηθ(t′)〉 = 2Bθδ(t − t′), where
Bij = B‖ûiûj +B⊥ (δij − ûiûi).

B. Individual motor dynamics

We model the interaction cycle of an individual motor
protein with the filament as shown in Fig. 1 for a one-
dimensional system. The tail of a specific motor is fixed
at position xt in the plane. At a time t0 the head of this
motor attaches to a point on the filament. The position
of the motor head at the time of attachment is xh(t0) =
r(t0)+s0û(t0), where r(t0) and û(t0) denote the position
of the center of the filament and its orientation t = t0

and s0 ∈ [−L/2, L/2] parametrizes the distance of the
point of attachment from the center of the filament (cf.
Fig. 1(b)). We assume that motor proteins will attach to
parts of the filament which are within a distance of the
order of the size of the motor protein. The stretch of the
motor tail at the time of attachment is then of order of
the motor size and will be neglected, i.e. xh(t0) − xt =
0, or motors attach to the part of the filament directly
overhead without any initial stretch.

For t > t0 the motor head remains attached to the fil-
ament and walks along it towards the polar head (−û di-
rection) until detachment. The tails, modeled as a linear
spring of force constant k, exert a load f = −k∆(t, τ ; s0)
on the head, where ∆(t, τ ; s0) = xh(t)−xt is the stretch
at time t of a motor protein that has been attached for
a time τ , i.e. t = t0 + τ (cf. Fig. 1(c)). Since we assume
∆(t0) = 0, we can also write

∆(t, τ ; s0) = r(t)− r(t− τ) + σ(t, τ)û(t)

+s0 [û(t)− û(t− τ)] , (2)

where σ(t, τ) = s(t) − s(t − τ) is the distance traveled
along the filament at time t by a motor head that has
been attached for a time τ , measured from the initial at-
tachment position, s0. The kinematic constraint imposed
by the condition of attachment requires

∂t∆(t, τ ; s0) = v(t)− v(t− τ) + û(t) [vm(t)− vm(t− τ)]

+Ω(t)σ(t, τ) + s0 [Ω(t)−Ω(t− τ)] , (3)

where Ω(t) = ∂tû(t) = θ̇n̂(t) is the angular velocity of
the rod and vm(t) = ∂ts(t) the velocity of the motor head
along the filament. We have introduced a unit vector
n̂ = ẑ× û normal to the long axis of the filament. Then
(ẑ, û, n̂) defines a right-handed coordinate system with
in-plane axes longitudinal and transverse to the filament.
We note that Eq. (3) can also be written as

∂t∆(t, τ ; s0) + ∂τ∆(t, τ ; s0) = v(t) + vm(t)û(t)

+Ω(t)σ(t, τ) + s0Ω(t) . (4)

While the motor remains bound, the dynamics of the
motor head along the filament is described by an over-
damped equation of motion

ζmṡ(t) = −fs + û · f (5)

where fs > 0 is the stall force, defined as the force where
the velocity vm = ṡ of the loaded motor vanishes. Since
motors move in the −û direction, generally vm = ṡ < 0.
Letting f‖ = û · f = −k∆‖, Eq. (5) can also be written
as

vm(t) = −v0

(
1− f‖(∆‖)

fs

)
, (6)

where v0 = fs/ζm ∼ ∆µ > 0 is the load-free stepping ve-
locity, with ∆µ the rate of ATP consumption. The motor
velocity is shown in Fig. (2) as a function of the load f‖.
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FIG. 2: The velocity−vm of a loaded motor head as a function
of the load f‖ = û ·∆. The figure shows the stall force fs
where vm = 0 and the detachment force −fd.

The motor head velocity also vanishes for f‖ < −fd, when
the motor detaches. The linear force-velocity relation for
an individual motor is consistent with experiments on
single kinesin molecules [24].

The active force and torque on the filament due to an
individual bound motor can then be expressed in terms
of these quantities as

fa(t, τ ; s0) = −k∆(t, τ ; s0) , (7a)

τa(t, τ ; s0) = −ẑ · [(s0 + σ(t, τ))û(t)× k∆(t, τ ; s0)] .
(7b)

Finally, after traveling along the filament for a time
τdetach, the motor head detaches and the head position
relaxes instantaneously back to the fixed position xt of
the tail.

We note that we shall not be considering the possibil-
ity of direct interactions of motors with each other. We
have also not considered stochastic aspects of the motor
motion along the filament (Eq. (5)).

C. Motor binding and unbinding

Next we need to describe the stochastic bind-
ing/unbinding dynamics of the motor heads. We assume
the motor tails are attached to the substrate with a ho-
mogeneous surface density ρm, such that for a rod of
length L and width b a maximum of N = ρmLb motors
can be bound at any given time. Following Guérin et
al. [19], we denote by Pb(t, τ ; s0) the probability that a
motor head that has attached at s0 at a time t0, has
remained attached for a duration τ at time t. For sim-
plicity in the following we assume that the probability
that a motor attaches at any point along the filament is
uniform, i.e., Pb(t, τ ; s0) = 1

LPb(t, τ). We further assume
that when motors unbind they relax instantaneously to
the unstretched state. The time evolution of the binding

probability is then given by

∂tPb(t, τ) + ∂τPb(t, τ) =− 〈ωu(∆(τ))〉s0Pb(t, τ)

+ ωbδ(τ)pu(t) , (8)

where pu(t) is the probability that a motor be unbound
at time t. The probability distribution is normalized ac-
cording to∫ ∞

0

dτ

∫ L/2

−L/2
ds0 Pb(t, τ ; s0) + pu(t) = 1 . (9)

In Eq. (8), ωu(∆(τ)) and ωb are the rates at which a mo-
tor head with tails stretched by an amount ∆(t, τ) un-
binds from and binds to the filament, respectively. The
binding rate ωb will be assumed to be constant. In con-
trast, the unbinding rate ωu is a strong function of the
stretch of the motor tails, that has to be obtained by
solving Eq. (4), with initial condition ∆(t = 0, τ) = 0.
We will see below that the nonlinear dependence of
the unbinding rate plays an important role in control-
ling the filament dynamics. In two dimensions the un-
binding rate ωu also depends on the initial attachment
point s0 along the filament. To be consistent with our
ansatz that the probability that the motor attaches at
any point along the filament is uniform, we have replaced
the rate in Eq. (8) with its mean value 〈ωu〉s0 , where

〈...〉s0 =
∫ L/2
−L/2

ds
L ... denotes an average over the initial

attachment points.
The unbinding rate is controlled by the work done by

the force (load) acting on the motor head, which in turn
is a linear function of the stretch ∆. A form that has
been used extensively in the literature for one-dimensinal
models is an exponential, ωu = ω0e

α|∆|, where ω0 is the
unbinding rate of an unloaded motor and α is a charac-
teristic length scale that control the maximum stretch of
the tails above which the motor unbinds [34]. The expo-
nential form represents an approximation for the result
of a detailed calculation of the average time that a mo-
tor moving along a polar filament spends attached to the
filament as a function of a tangentially applied load [25]
and is consistent with experiments on kinesin [26]. This
form can easily be generalized to to the case of a fil-
ament sliding in two dimensions where the motor load
had both components tangential and transverse to the
filament. It is, however, shown in the Appendix that
within the mean-field approximation used below the ex-
ponential form yields a steady-state stretch ∆ that satu-
rates to a finite value at large velocity v of the filament.
This is unphysical as it does not incorporate the cutoff
described by the detachment force fd in Fig. 2. For this
reason in the mean-field treatment described below we
use a parabolic form for the unbinding rate as a function
of stretch,

ωu(∆) = ω0

[
1 + α2|∆|2

]
, (10)

where for simplicity we have assumed an isotropic de-
pendence on the magnitude of the stretch in terms of a
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single length scale, α−1. An explicit comparison of the
two expressions for the unbinding rates is given in the
Appendix.

The total active force and torque on the filament aver-
aged over the original positions and the times of attach-
ment can be written as

Fa(t) = −Nk
∫ ∞

0

dτ 〈Pb(t, τ) ∆(t, τ ; s0)〉s0 , (11a)

Ta(t) = −Nk
∫ ∞

0

dτ 〈Pb(t, τ) ẑ · [(s0 + σ(t, τ))û(t)×∆(t, τ ; s0)]〉s0 . (11b)

II. MEAN FIELD APPROXIMATION

To proceed, we introduce several approximations for
the motor dynamics. First, we restrict ourselves to the
dynamics on times scales large compared to the attach-
ment time τ of individual motors. For t� τ we approx-
imate

σ(t, τ) ' vm(t)τ , (12a)

∆(t, τ ; s0) ' [v(t) + vm(t)û(t) + s0Ω(t)] τ . (12b)

This approximation becomes exact for steady states
where the filament and motor velocities are independent
of time. We also stress that in Eqs. (12a) and (12b) σ and
∆ are still nonlinear functions of τ due to the dependence
of vm on the load force.

Secondly, we recall that we have assumed that the at-
tachment positions s0 are uniformly distributed along the
filament and can be treated as independent of the resi-
dence times τ . Finally, we make a mean field assump-
tion on the probability distribution of attachment times,
which is chosen of the form P (t, τ) = δ(τ − τMF)pb(t),
with pb(t) the probability that a motor be attached at

time t regardless of the its attachment time. The mean-
field value of the attachment time is determined by re-
quiring

τMF = [〈ωu (∆(τMF))〉s0 ]
−1

. (13)

In previous literature a similar mean field assumption
has been stated in terms of the stretch, ∆ [7, 8]. In
the present problem, however, where filaments can slide
in two dimensions, it is necessary to restate the mean-
field theory in terms of the residence time τ as the active
forces and torques depend on both the stretch ∆ of the
motor tails and the distance σ traveled by a bound motor
head along the filament. These two quantities are in turn
both controlled by a single stochastic variable, identified
with the residence time τ . The rate of change of the
probability pb(t) that a motor be bound at time t is then
described by the equation

∂tpb(t) = −τ−1
MFpb(t) + ωb [1− pb(t)] , (14)

The mean field active force and torque due to the mo-
tors are then given by

FMF
a = −kN〈∆(t, τMF; s0)pb(t)〉s0 , (15)

TMF
a = −kN〈pb(t) ẑ · [(s0 + σ(t, τMF))û(t)×∆(t, τMF; s0)]〉s0 . (16)

In the following we will work in the mean-field approxi-
mation and remove the label MF from the various quan-
tities.

III. ACTIVE FILAMENT SLIDING IN ONE
DIMENSION

We first consider the simplest theoretical realization of
a motility assay experiment, where the actin filament is
sliding over a one dimensional track of tethered motor

proteins. A closely related model, where the filament is
elastically coupled to a network, has been used exten-
sively in the literature to study the onset of spontaneous
oscillations arising from the collective action of the bound
motors [6, 7, 11]. Previous studies of freely sliding fila-
ments, as appropriate for the modeling of motility assays,
have also been carried out both analytically and numer-
ically [18]. Our work contains some new results on the
response to an external force of a filament free to slide
under the action of active crosslinkers and also on the
filament fluctuations.
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Parameters Myosin-II Kinesin

`0 ∼ 2 nm ∼ 8 nm

δs ∼ 1 nm ∼ 25 nm

ε ∼ 2 ∼ 0.32

TABLE I: Typical values of the length scales `0 = v0/ω0 and
δs = fs/k introduced in the text and the ratio ε for myosin
II and kinesin. The parameters are taken from Refs. [27]
and [14].

The Langevin equation for the center of mass coordi-
nate x of the filament is given by

ζẋ = Fa(t) + Fext + η(t) , (17)

where ẋ is the center-of-mass velocity of the filament and
the mean-field active force is given by

FMF
a (t) = −kNpb(t)∆(ẋ, τ) . (18)

In one dimension the dependence on s0 drops out and
Eq. (12b) simply gives ∆ ' (ẋ + vm)τ . Substituting
Eq. (6) for vm, we can solve for ∆ as a function of ẋ and
τ ,

∆(ẋ, τ) =
(ẋ− v0)/ω0

τ̃−1 + ε
, (19)

and Eq. (13) for the mean attachment time becomes

τ̃−1(ẋ) = 1 +
(ẋ− v0)2α2

[τ̃−1(ẋ) + ε]
2
ω2

0

, (20)

where τ̃ = ω0τ and ε = kv0/fsω0. The parameter ε is the
ratio of the length `0 = v0/ω0 traveled by an unloaded
motor that remains attached for a time ω−1

0 to the stretch
δs = fs/k of the motor tails at the stall force, fs. Typical
values for these length scales and the parameter ε are
given in Table I.

It is convenient to rewrite the mean residence time τ̃
as

τ̃−1 = 1 +
(u− 1)2ν2

[τ̃−1 + ε]
2 , (21)

where u = ẋ/v0 and we have introduced a dimensionless
parameter ν = `α that controls the dependence of the
unbinding rate on the load exerted on the bound heads
by the stretched motor tails, with

1

`
=

1

`0
+

1

δs
(22)

the geometric mean of the two length scales introduced
earlier. For stiff motors, with ε � 1 or `0 � δs, ` ∼ δs,
while for floppy, easy to stretch motors, corresponding to
ε � 1 or `0 � δs, ` ∼ `0. Setting ν = 0 corresponds
to neglecting the load dependence of the unbinding rate.
The exact solution to Eq. (21) for the mean residence
time τ̃(ẋ) as a function of the filament velocity can be
determined and is discussed in the Appendix. Clearly τ
has a maximum value at ẋ = v0, where τ = ω−1

0 and
decays rapidly as |ẋ− v0| grows.

A. Steady State and its Stability

We begin by characterizing the steady state dynamics
of the filament in the absence of noise. Incorporating for
generality an external force Fext, the steady state velocity
v of the filament is obtained from the solution of the
nonlinear equation

ζv = Fext + Fa(v) (23)

where Fa(v) = −kNpbs(v)∆(v). The steady state stretch
∆(v) is given by Eq. (19) with ẋ = v and

pbs(v) =
ωbτ(v)

1 + τ(v)ωb
, (24)

with τ(v) given by Eq. (21) for ẋ = v. To gain some
insight in the behavior of the system, we expand the
active force as Fa(v) ' Fp +

(
∂Fa
∂v

)
v=0

v + O(v2), with

Fp = Fa(v = 0). Retaining only terms linear in v this
gives a steady state force/velocity relation of the form

(ζ + ζa)v = Fext + Fp (25)

with a filament “propulsion” force Fp

Fp =
Npbs0k`0

ε+ τ̃−1
0

, (26)

where pbs0 = r/[r+(1−r)τ̃−1
0 ], with r = ωb/(ω0+ωb) the

duty ratio, and τ̃0 = τ̃(v = 0). The active contribution
ζa = −

(
∂Fa
∂v

)
v=0

to the friction is given by

ζa = Npbs0
k|∆0|
v0

[
1−

( |∆0|
`0

+ pbs0
1− r
r

)
2α2∆2

0`0
`0 + 2α2|∆0|3

]
,(27)

where ∆0 = ∆(v = 0) = −`0/(τ̃−1
0 + ε). In the absence

of external force, the filament will slide at a velocity

vs = Fp/(ζ + ζa) (28)

due to the action of the motor proteins. This motion
is in the polar direction of the filament and opposite to
the direction of motion of bound motors along the fila-
ment. Phenomenological models of motility assays have
described the actin filaments as “self-propelled” Brown-
ian rods. Our model yields a microscopic calculation of
such a “self-propulsion” force Fp in terms of microscopic
parameters characterizing the motor proteins. We note
that −Fp can also be interpreted as the “stall force” of
the filament, i.e. the value of Fext required to yield v = 0.
This is a quantity that may be experimentally accessible
using optical force microscopy.

If we neglect the load dependence of the unbinding rate
by letting ν = 0, the mean number of bound motors is
simply Nr and F 0

p = Nrk`, with ` given by Eq. (22). In

this limit the sliding velocity v0
s in the absence of external

force can be written as

v0
s =

v0

1 + ζ/ζ0
a

. (29)
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where the active friction ζ0
a = Nrk`/v0 > 0 is always

positive. The sliding velocity vanishes when v0 → 0 and
it saturates to its largest value v0 when the number Nr
of bound motors becomes very large and ζ0

a � ζ. The
behavior is controlled by the parameter ε. If the motors
are easy to stretch, i.e., ε� 1, then the propulsion force is
determined entirely by the elastic forces exerted by these
weak bound motors, with F 0

p ' Nrk`0. On the other
hand stiff motors, with ε � 1, stall before detaching.
The propulsion force is then controlled by the motor stall
force, with F 0

p ' Nrfs.
The load-dependence of the unbinding rate changes

qualitatively the behavior of the system. In particular,
the net friction ζ + ζa can become negative, rendering
the steady state unstable. This instability was already
noted in Ref. [11] for a two-state model of active linkers
and in Ref. [19] for a two state “soft” motor model. The
full nonlinear force-velocity curves are shown in Fig. 3 for
various values of the motor stiffness k, for parameters ap-
propriate for acto-myosin systems. In the steady state, as
we increase the active parameter k while keeping the sub-
strate friction ζ constant, the Fext−v curve becomes non-
monotonic, and two distinct regions of bistability emerge.
To understand the increase of the bistability region with
motor stiffness, we note that the active force is simply
proportional to k, hence naively one would indeed expect
its effect to be more pronounced for stiff motors. The de-
tailed behavior is, however, determined by the interplay
of the mean residence time τ that motors spend bound
to the filament and the stretch, ∆. Soft, floppy motors
have large stretches, controlled mainly be the length `0
traveled by an unloaded motors advancing at speed v0.
On the other hand, their residence time is small and the
overall effect of the active force remains small. In con-
trast, stiff motors have a small stretch, of order of the
stretch δs = fs/k of a stalled motor, but long residence
times and are collectively capable of slowing down the
filament and even holding it in place against the action
of the external force, driving the negative friction insta-
bility. At even larger values of the external force motors
are effectively always unbound due to the fast sliding of
the filament and the velocity-force curve approaches the
linear form obtained when no motors are present. This
behavior is best seen from Fig. 5.

The region of non-monotonicity of the force-velocity
curve and associated bistability can also be displayed as
a phase diagram, as shown in Fig. 4. The stiffness of
myosins is about 5 pN/nm and the actin filament friction
was estimated to be of order 0.003 pNs/nm in Ref [4].
In actomyosin systems the negative friction instability
should therefore be observable in a range of experimen-
tally relevant parameters. Kinesin motors have floppier
tails and a smaller stiffness of about 0.5 pN/nm. In this
case bistability effects should be prevalent only at very
low filament friction, ζ � 0.001 pNs/nm. A proper es-
timate of the region of parameters where the instability
may be observable is rendered difficult by the fact that
the onset of negative friction is also a strong function of

-5000 5000 10 000
v Hnm�sL

-20

-10

10

20

FextHpNL

FIG. 3: (Color online) Force-velocity curves for ζ =
0.002 pNnm−1s and various values of the motor stiffness k,
showing the transition to non-monotonicity as k increases.
The values of the stiffness k (in pN/nm) and the correspond-
ing values for α−1 (in nm) and ε are as follows: k = 0,
α−1 = 0, ε = 0 (black dotted line); k = 1 , α−1 = 0.75, ε = 0.5
(red dashed line); k = 2, α−1 = 1.5, ε = 1 (blue dashed-
dotted line); k = 8, α−1 = 6, ε = 4 (black solid line). At high
velocities the curves merge into the linear curve Fext = ζv
(black dotted line), corresponding to the case where no mo-
tors are present. The remaining parameters have the follow-
ing values: N = ρmLb = 100, v0 = 1000 nm/s, fs = 4 pN,
ω0 = 0.5 (ms)−1, r = 0.06.

the density of motors tethered to the substrate, which in
turn affects the value of the friction ζ. In general, we
expect that a high motor density will be needed for the
instability to occur. On the other hand, if the density of
motors is too high, the friction ζ will be enhanced and
the instability suppressed.

We stress that the force-velocity curves displayed in
Fig. 3 have been obtained by calculating Fext as a func-
tion of v. In an experiment one would tune the applied
force and measure the resulting velocity. The system
would not access the unstable regions of negative friction,
but rather follow the hysteretic path sketched in Fig. 5.
The discontinuous jump may occur at the boundary of
the stability region, as shown in the figure, or before such
a boundary is reached, corresponding to what is known
as “early switching”.

To summarize, motors have two important effects on
the steady state dynamics of the filament. First, they
make the filament self-propelled, in the sense that in the
absence of an external force the filament will slide at a
velocity vs given by Eq. (28). The value of vs increases
with increasing motor stiffness and of course vanishes for
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Ζ HpN s�nmL

FIG. 4: (Color online) ”Phase diagram” in k-ζ plane show-
ing the region where the Fext-v curves exhibit non-monotonic
behavior (blue shaded region) for N = ρmLb = 100 and
v0 = 1 µm s−1, fs = 4 pN, α/k = 1.33 pN, ω0 = 0.5 (ms)−1,
r = 0.06.
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FIG. 5: The figure sketches the hysteretic behavior that may
be obtained in an experiment where an external force Fext

is applied to a filament in a motility assay. The response of
the filament will generally display two regions of hysteresis,
at positive and negative forces.

v0 = 0, corresponding to the vanishing of the rate of
ATP consumption ∆µ. The sliding velocity vs is shown
in Fig. 6 as a function of the parameter ε inversely pro-
portional to the motor stall force for a few values of the
maximum number of motors that can bind to the fila-
ment. A second important effect of motor activity is the
discontinuous and hysteretic response to an external force
displayed in Fig. 5. When Fext = 0 the filament slides at
the motor-induced velocity vs. If a small force Fext > 0 is
applied, the filament velocity remains an approximately
linear function of the applied force, but with an effective

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

ε

vs/v0

FIG. 6: The motor-induced sliding velocity vs of an actin
filament in the absence of external force is shown as a func-
tion of ε = `0/δs for N = 10 (dotted line), N = 25 (dashed
line), N = 100 (dashed-dotted line) and N = 500 (solid
line). We observe that vs → v0 for stiff motors as N is in-
creased. Parameter values: ζ = 0.002 pN (nm)−1s, r = 0.06,
α/k = 1.33 pN.

friction greatly enhanced by motor binding/unbinding.
This enhancement of friction is also termed in the lit-
erature as protein friction [28]. At high velocity, only
a few motors are attached to the filament and the fila-
ment velocity approaches the value it would have in the
absence of motors as the applied force is increased be-
yond a characteristic value. When the external force is
ramped down the filament velocity jumps to the lower
branch corresponding to a lower value of the force, re-
sulting in hysteresis.

B. Fluctuation Dynamics

We now examine the dynamics of noise-induced fluc-
tuations about the steady state by letting δẋ = ẋ − v,
where v is the steady state velocity, given by the solu-
tion of Eq. (23) discussed in the previous section. The
dynamics of the fluctuation δẋ is then described by the
equation

ζδẋ = −kN∆(v)δpb − kNpbsδ∆ + η(t) , (30)

where both δ∆ = [∂v∆(v)]δẋ and δpb(t) depend on noise
only implicitly through the velocity ẋ, with

∂tδpb = −
[

1

τ(v)
+ ωb

]
δpb − pbs(v)

∂

∂v

[
1

τ(v)

]
δẋ (31)

The random force η(t) in Eq. (30) describes noise on the
filament, with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = 2Bδ(t − t′).
Noise can arise in the system from a variety of sources,
including the fluid through which the filament moves and
the motor on/off dynamics. For simplicity we assume the
spectrum is white, albeit with a non-thermal strength B.
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By solving Eq. (31) with initial condition δpb(t = 0) = 0
and substituting in Eq. (30), we obtain a single equation
for δẋ,

[ζ + ζa(v)] δẋ(t) + ω0ζ
′
a(v)

∫ t

0

dt′ e−Ω(t−t′)δẋ(t′) = η(t)

(32)
where we have introduced an effective frequency Ω(v) =
τ−1(v) + ωb and active frictions

ζa(v) = kNpbs(v)∂v∆(v) (33)

ζ ′a(v) = kNpbs(v)∆(v)
∂

∂v

(
1

τ̃

)
. (34)

In all the parameters defined above v has to be replaced
by the steady state solution obtained in the previous sec-

tion. The time scale Ω−1 represent the duration of the
cycle of a loaded motor. Note that ζa(v = 0) = ζa, with
ζa given by Eq. (27). It is evident from Eq. (32) that
motor dynamics yields a non-Markovian contribution to
the friction.

If we neglect the load dependence of the unbinding
rate by letting ν = 0, hence τ−1 = ω0, then ζa(v) =
ζa0 = Nrk`/v0 and ζ ′a(v) = 0. In this limit 〈[δx(t) −
δx(0)]2〉 = 2Da0t and is diffusive at all times, with an
effective diffusion constant Da0 = B

(ζ+ζa0)2 .

When ν is finite we obtain

〈[δx(t)− δx(0)]2〉 = 2Dat+ 4Da

[
ζ ′a(v)ω0

[ζ + ζa(v)]Ωa

]2(
t− 1− e−Ωat

Ωa

)
, (35)

where Da = B/[ζ + ζa(v)]2 and Ωa(v) = Ω(v) +
ω0ζ
′
a(v)/[ζ + ζa(v)]. The characteristic time scale Ω−1

a

controls the crossover from ballistic behavior for t� Ω−1
a

to diffusive behavior for t� Ω−1
a . It is determined by the

smaller of two time scales: Ω−1, defined after Eq. (32),
that represents the duration of the cycle of a loaded mo-
tor, and the active time (ω0ζ

′
a/[ζ+ζa])−1 that represents

the correlation time for the effect of motor on/off dy-
namics on the filament. At long times the mean-square
displacement is always diffusive, with an effective diffu-
sion constant

Deff = Da

[
1 +

(
ζ ′aω0

[ζ + ζa(v)]Ωa

)2
]

(36)

This result only describes the behavior of the system in
the stable region, where the effective friction remains
positive. At the onset of negative friction instability
ζ + ζa(v) → 0 and the effective diffusivity diverges. In
other words the instability is also associated with large
fluctuations in he rod’s displacements due to the cooper-
ative motor dynamics.

To leading order in ν the frequency Ωa that controls
the crossover to diffusive behavior is simply Ω ' ω0 +
ωb + O(ν2). For non-processive motors such as myosins
ω0 � ωb and Ω ∼ ω0. The effective diffusion constant is
given by

Deff ' Da

[
1 +

2ζ2ζa0

(ζ + ζa0)3

(
v0α

ω0(1 + ε)

)2

+
[
(v0α/ω)4

]]
.

(37)
This expression indicates that the enhancement of the
diffusion constant comes from the competition of the

ballistic motor-driven motion of the filament at speed
∼ v0ζa0/(ζ + ζa0) and the randomization of such motion
by the motor on/off dynamics on time scales ∼ ω−1

0 . The
result is that the filament dynamics is diffusive at long
times, but with an enhanced diffusion constant.

Finally, we stress that the correlation function 〈[δx(t)−
δx(0)]2〉 describes the fluctuations about the steady state
value vt. if we write x(t) = vt + δx(t) the actual mean
square displacement of the center of mass of the rod is
given by 〈(x(t)−x(0))2〉 = v2t2 +〈[δx(t)−δx(0)]2〉 and is
ballistic at long times in one dimension due to the mean
motion of the rod. In addition, due to nonlinearity of
the Langevin equation (17) the mean value 〈x〉 in the
presence of noise will in general differ from the steady
state solution vt obtained in the absence of noise due
to renormalization by fluctuations 〈Fa(ẋ, t)〉 − Fa(v, t).
These fluctuations are neglected in mean field theory.

IV. ACTIVE FILAMENT DYNAMICS IN TWO
DIMENSIONS

In two dimensions the coupled translational and ro-
tational dynamics of of the filament is described by
Eqs. (1a) and (1b). It is convenient to write the instan-
taneous velocity of the center of the filament in terms of
components longitudinal and transverse to the long axis
of the filament, ṙ = V‖û + V⊥n̂. Similarly the stretch is
written as ∆ = ∆‖û + ∆⊥n̂, where (see Eq. (12b))

∆‖ = û ·∆ = (V‖ + vm)τ , (38a)

∆⊥ = n̂ ·∆ = (V⊥ + s0θ̇)τ . (38b)
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It is then clear that ∆‖ has the same form as in one
dimension

∆‖ =
(V‖ − v0)/ω0

τ̃−1 + ε
, (39)

and the mean-field value of the attachment time τ is given
by

τ̃−1(V‖, V⊥, θ̇) = 1+
(V‖ − v0)2α2

(τ̃−1 + ε)2ω2
0

+
V 2
⊥τ̃

2α2

ω2
0

+
L2θ̇2τ̃2α2

12ω2
0

,

(40)
where we have carried out the average over s0. Inserting
these expressions in Eqs. (15) and (16), the mean field
active force and torque exerted by bound motors on the
filament can then be written as

Fa = −kNpb(t)
[

(V‖ − v0)/ω0

τ̃−1 + ε
û + V⊥τ n̂

]
, (41a)

Ta = −kNpb(t)τ
[
L2θ̇

12
+ V⊥vmτ

]
. (41b)

A. Steady State and its stability

The steady state of the motor-driven filament in two
dimensions in the absence of noise is characterized by
the center of mass velocity v = v‖û + v⊥n̂ and angular

velocity ϑ̇. In the absence of any external force or torque,
ϑ̇ and v⊥ are identically zero, whereas the longitudinal
dynamics described by v‖ is identical to that obtained in
one-dimension: the filament will slide along its long axis
at a steady longitudinal velocity v‖ = Fp/(ζ + ζa), with
Fp and ζa given by Eqs. (26) and (27), respectively.

To gain some insight into the stability of the system
under application of external forces or torques, we ex-
pand Fa and Ta to linear order in velocities v and ϑ̇ as,

Fa(v, ϑ̇) ' Fp+
(
∂Fa
∂v‖

)
0
v‖+

(
∂Fa
∂v⊥

)
0
v⊥+

(
∂Fa
∂ϑ̇

)
0
ϑ̇, and

Ta(v, ϑ̇) '
(
∂Ta
∂v‖

)
0
v‖ +

(
∂Ta
∂v⊥

)
0
v⊥ +

(
∂Ta
∂ϑ̇

)
0
ϑ̇, where

Fp = Fa,0 = Fpû, is the tangential propulsion force due
to the motors. The subscript ‘0’ indicates that the ex-
pressions are evaluated at v = 0 and ϑ̇ = 0. This leads to
steady state force/velocity and torque/velocity relations
of the form (

ζ + ζ
a

)
· v = Fext + Fpû , (42a)

(ζθ + ζθa) ϑ̇ = Text − gav⊥ , (42b)

where we have introduced an active “momentum” ga

given by ga = −
(
∂Ta
∂v⊥

)
0
. The active contributions to

the longitudinal, transverse and rotational friction co-

efficients are defined as ζ‖a = −û ·
(
∂Fa
∂v‖

)
0
, ζ⊥a =

−n̂ ·
(
∂Fa
∂v⊥

)
0
, and ζθa = −

(
∂Ta
∂ϑ̇

)
0
. The longitudinal

friction coefficient ζ‖a is identical to the active friction

ζa given in Eq. (27) for a rod in one dimension, with
∆ → ∆‖. The transverse and rotational friction coeffi-
cients are enhanced by motor activity. Their active com-
ponents are given by

ζ⊥a =
kNrτ0

r + (1− r)τ̃−1
0

(43a)

ζθa =
kNrτ0L

2/12

r + (1− r)τ̃−1
0

. (43b)

Finally we have, ga =
kNrτ0v0(τ0+ε|∆0

‖|)
r+(1−r)τ̃−1

0

. When the load

dependence of the unbinding rate is neglected (ν = 0),
all friction coefficients are enhanced by motor activ-
ity. When the force/velocity and torque/angular veloc-
ity curves are calculated to nonlinear order, we find that
the only instability is the negative longitudinal friction
instability obtained in one dimension. No instabilities
are obtained in the angular dynamics. We expect this
will change if we include the semiflexibility of the fila-
ment [29, 30].

B. Fluctuations around the steady state

We now examine the dynamics of noise-induced fluc-
tuations about the steady state by letting δṙ = ṙ − v
and δθ̇ = θ̇ − ϑ̇ where v and ϑ̇ are the steady state ve-
locity and angular frequency in the absence of external
force and torque. As noted in the previous section when
Fext = 0 and Text = 0, v‖ = v 6= 0, with v given by the

solution of Eq. (23), and v⊥ = ϑ̇ = 0. Projecting velocity
fluctuations longitudinal and transverse to the filament,
δṙ = ûδV‖ + n̂δV⊥, the dynamics of fluctuations is de-
scribed by the coupled equations,[

ζ‖ + ζ‖a(v)
]
δV‖ = −kN∆‖(v)δpb(t) + η‖ , (44a)

[ζ⊥ + ζ⊥a(v)] δV⊥ = η⊥ , (44b)

[ζθ + ζθa(v)] δθ̇ = −kNpbs(v)τ(v)vm(v)δV⊥ + ηθ ,
(44c)

with

[ζθ + ζθa(v)] δṗb = −Ω(v)δpb − pbs(v)
∂

∂v

[
1

τ(v)

]
δV‖ ,

(45)
where the effective frequency Ω(v) = τ−1(v) + ωb
and the longitudinal active friction ζ‖a(v) are as in
one dimension, ζ⊥a(v) = kNpbs(v)τ(v) and ζθa(v) =
kNpbs(v)τ(v)L2/12. In all the parameters, v ≡ v‖ has to
be replaced by the steady state solution obtained in one
dimension in the absence of external force or torque.

The time-correlation function of orientational fluctu-
ations, ∆θ(t) = δθ(t) − δθ(0), can be calculated from
Eqs. (44b) and (44c), with the result

〈∆θ(t)∆θ(t′)〉 = 2Dθa min(t, t′) . (46)
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The effective rotational diffusion constant is enhanced by
the transverse diffusivity and is given by

Dθa(v) =
Bθ

[ζθ + ζθa(v)]
2 +

B⊥/`
2
p(v)

[ζ⊥ + ζ⊥a(v)]
2 (47)

with `p(v) = [ζθ + ζθa(v)] /kNpbs(v)τ(v)vm(v). Using
Eq. (46), one immediately obtains the angular time-
correlation function as [31],

〈û(t′) · û(t′′)〉 = e−Dθa|t′−t′′| . (48)

The fluctuations in the probability of bound motors are
driven by their coupling to the stochastic longitudinal
dynamics of the filament. Assuming δpb(0) = 0, we ob-
tain

〈δpb(t)δpb(t′)〉 =

(
ζ ′aω0

vp

)2 B‖

Ωa

[
e−Ωa|t−t′| − e−Ωa(t+t′)

]
,

(49)

where Ωa(v) = Ω(v) + ω0
ζ′a(v

ζ‖+ζ‖a(v) ,

ζ ′a(v) = kNpbs(v)∆‖(v) ∂∂v
(

1
τ̃

)
, and vp(v) =

Nk∆‖(v)/
[
ζ‖ + ζ‖a(v)

]
is a longitudinal propulsion

velocity. Notice that vp(v = 0) = vs/pbs0, with vs given
in Eq. (28). Finally, we can compute the correlation
function of the fluctuation δṙ of the filament’s position.
In the laboratory frame the dynamics of δṙ can be recast
in the form of a simple equation,

δṙ = −vpδpb(t)û +
[
ζ + ζa(v)

]−1

· η (50)

Fluctuations in the probability of bound motors do not
couple to orientational fluctuations to linear order. It is
then straightforward to calculate the correlation function
of displacement fluctuations, with the result

〈[δr(t)− δr(0)]2〉 = 2Deff t+
D‖aζ

′2
a ω

2
0/Ω

2
a

(D2
θa − Ω2

a)(ζ‖ + ζ‖a)2

[
−(Dθa + Ωa)

(
1− e−2Ωat

)
+

4Ω2
a

Dθa + Ωa

(
1− e−(Ωa+Dθa)t

)]
(51)

where effective longitudinal and transverse diffusion con-
stants have been defined as

D‖a = B‖/[ζ‖ + ζ‖a(v)]2 , (52a)

D⊥a = B⊥/[ζ⊥ + ζ⊥a(v)]2 . (52b)

Finally, using r(t) = δr(t)+
∫ t

0
dt′vû(t′), the mean square

displacement (MSD) can be written as,

〈[r(t)−r(0)]2〉 = 〈[δr(t)−δr(0)]2〉+ v2

Dθa

[
t− 1− e−Dθat

Dθa

]
.

(53)
The MSD is controlled by the interplay of two time scales,
the rotational diffusion time, D−1

θa , that is decreased by

activity as compared to its bare value, D−1
θ , and the time

scale Ω−1
a , which is turn controlled by the duration of the

motor binding/unbinding cycle. If D−1
θa � Ω−1

a , which is
indeed the case for actomyosin systems [35] then on times
t� Ω−1

a the MSD is given by

〈[r(t)− r(0)]2〉 = 2Defft+
v2

Dθa

[
t− 1− e−Dθat

Dθa

]
, (54)

with

Deff = D‖a +D⊥a +
D‖aΩa

Dθa + Ωa

(
ζ ′aω0

[ζ‖ + ζ‖a(v)]Ωa

)2

.

(55)
In other words the rod performs a persistent random walk
consisting of ballistic segments at speed v randomized

by rotational diffusion. The behavior is diffusive both
at short and long times, albeit with different diffusion
constants, Deff and Deff + v2/(2Dθa), respectively. This
is indeed the dynamics of a self-propelled rod. If the noise
strengths B‖, B⊥ and Bθ are negligible, then Eq. (54)
reduces to

〈[r(t)− r(0)]2〉 ' v2

Dθa

[
t− 1− e−Dθat

Dθa

]
. (56)

and the MSD exhibits a crossover from ballistic behavior
for t� D−1

θa to diffusive at long times.
It is worthwhile to note that if one neglects load

dependence of unbinding rate by taking ν = 0, ef-
fective diffusivity at long time is enhanced with,
D0

eff = D0
‖a + D0

⊥a + (v0)2/2D0
θa, due to the interplay

between ballistic motion driven by the tethered motors
and rotational diffusion, unlike the situation in one
dimension.

V. SUMMARY AND OUTLOOK

We have investigated the dynamics of a single cy-
toskeletal filament modeled as a rigid rod interacting with
tethered motor proteins in a motility assay in two dimen-
sions. Motor activity yields both an effective propulsion
of the filament along its long axis and a renormalization
of all friction coefficients. The longitudinal friction can
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change sign leading to an instability in the filament’s re-
sponse to external force, as demonstrated by previous
authors [11]. The effective propulsion force and filament
velocity in the steady state are calculated in terms of
microscopic motor and filament parameters.

We also considered the fluctuations of the filament dis-
placement about its steady state value and demonstrated
that the coupling to the binding/unbinding dynamics of
the the motors yields non-Markovian fluctuations and en-
hanced diffusion. Future work will include the stochas-
ticity in the motor displacements and the semiflexibility
of filaments, which is expected to lead to buckling insta-
bilities [32] and anomalous fluctuations [33].
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Appendix A: Solution of Mean-Field Equation

Here we discuss the solution of the mean-field equation
(13) for the attachment time τ , For simplicity, we con-
sider the one-dimensional case in detail. The discussion
is then easily generalized to two dimensions. The mean-
field equation for the residence time τ is rewritten here
for clarity:

τMF = ω−1
u (∆(τMF )) . (A1)

The solution clearly depends on the form chosen to de-
scribe the dependence of the motor unbinding rate on the
stretch ∆, in turn given by ∆(τMF ) = (ẋ − v0)/(τ−1

MF +
εω0). The mean-field equation must be inverted to de-
termine τMF as a function of the filament velocity ẋ = v.
For compactness we drop the label ‘MF’. It is clear that
τ has a maximum at v = v0, where τ = ω−1

0 . This sim-
ply corresponds to the fact that the time a motor protein
spends attached to the actin filament is largest when the
motors’ tails are unstretched (∆ = 0) and the motors
advance at the unloaded motor velocity, v0.

It is convenient to use the dimensionless variable and
parameters introduced in the text and write the stretch
∆ as

∆ =
(u− 1)`0
ω̃u + 1

, (A2)

where u = v/v0, ω̃u = ωu/ω0 and `0 = v0/ω0. A form
commonly used in the literature is the exponential form
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FIG. 7: Mean field attachment time τMF as a function of v for
parameter values appropriate for acto-myosin systems: v0 =
1000 nm s−1, k = 10 pN nm−1, fs = 4 pN, α−1 = 7.5 nm,
ω0 = 0.5 (ms)−1, r = 0.06, corresponding to ε = 5. The
dashed line is the numerical solution of Eq. (A1) obtained
using the exponential dependence of the unbinding rate on
the stretch. The solid line is obtained using the parabolic
ansatz given in Eq. (A3).

ωu(∆) = ω0e
α|∆|, with α−1 a characteristic length scale.

The dimensionless combination α∆ can then be written
in terms of the parameter ν = α` = α`0/(1 + ε) and
setting ν = 0 corresponds to neglecting the load depen-
dence of the unbinding rate. The numerical solution of
Eq. (A1) for the mean attachment time as a function of
v is shown as a dashed line in Fig. 7 for parameter values
appropriate for acto-myosin systems. As expected it has
a sharp maximum at v = v0. At large v the attachment
time decays logarithmically with velocity. As a result, the
stretch is found to saturate at large velocity, as shown by
the dashed curve in Fig. 8. This behavior is unphysical
as it does not incorporate the fact that when the stretch
exceeds a characteristic value of the order fd/k, the mo-
tor head simply detaches, as shown in Fig. 2. Instead
of incorporating this cutoff by hand, we have chosen to
use a simple quadratic form for the dependence of the
unbinding rate on the stretch, given by

ωu(∆) = ω0

[
1 + α2∆2

]
. (A3)

With this form the mean field equation (A1) can be
solved analytically, although the explicit solution is not
terribly informative and will not be given here. The re-
sulting attachment time is shown as a solid line in Fig. 7.
The quadratic form reproduces the sharp maximum of τ
at v = v0 and yields τ ∼ v−3/2 at large v. The stretch
then decays with velocity, as shown in Fig. 8.
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FIG. 8: Stretch ∆ as a function of velocity v obtained us-
ing the mean-field value of the attachment time displayed in
Fig. 7. The parameter values are the same as in Fig. 7. The
dashed line is obtained using the exponential dependence of
the unbinding rate on the stretch. The solid line is obtained
using the parabolic ansatz given in Eq. (A3).
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[12] M. Badoual, F. Jülicher, and J. Prost, Proc. Natl. Acad.

Sci. USA 99, 6696 (2002).
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[19] T. Guérin, J. Prost, and J.-F. Joanny, Phys. Rev.

Lett. 104, 248102 (2010), URL http://prl.aps.org/

abstract/PRL/v104/i24/e248102.
[20] A. F. Huxley, Prog. Biophys. Chem. 7, 255 (1957).
[21] A. Vilfan, Biophys. J. 11301137, 2515 (2009).
[22] S. van Teeffelen and H. Löwen, Phys. Rev. E 78, 020101
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