141 research outputs found
Building Research Networks to Support Campus Programs
Purpose: This poster focuses on the methods, tools and outcomes involved in creating two targeted research networks to support large, long-running research programs in the Woods Hole scientific community.
Participants: These efforts are managed by librarians from the Marine Biological Laboratory/Woods Hole Oceanographic Institution (MBLWHOI) Library in collaboration with administrators and researchers from two programs: The Whitman Center for Research and Discovery at the Marine Biological Laboratory and the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS) at the Woods Hole Oceanographic Institution.
Description: In 2008, the MBLWHOI Library launched Connected Village (http://bibapp.mbl.edu), a research networking and discovery service for the Woods Hole Science Community1. The community has begun to recognize the Library as experts in promoting up-to-date information about researchers and research activities in Woods Hole. This year, NOSAMS and The Whitman Center have upcoming 10-year reviews from their respective funding agencies and governing boards. The ability to provide analytics regarding publication output, and demonstrate networking and outreach efforts is critical to the success of each review. This poster describes the planning, technical implementation, data gathering, deliverables, ongoing support and future directions of the Whitman (http://bibapp.mbl.edu/groups/51-MBL_Whitman_Center) and NOSAMS (http://nosams.mblwhoilibrary.org) research network tools.
Results/Outcome: Whitman Center – 611 researcher profiles created, 2064 published works harvested. NOSAMS – 1030 research profiles created, 1899 published works harvested. Administrators now have the ability to quantify and visualize the research output and impact of their programs. The researchers, who are from institutions all over the globe, now have the ability to discover potential collaborators in their field and get a much better sense of the collective scientific trends and contributions of their affiliated program. The Library is working with each program to develop workflows to systematically harvest new publications and maintain contact with their researchers on a continuous basis. Ongoing development includes refining our process for automated deposits of full-text and supporting data for publications into our Institutional Repository, the Woods Hole Open Access Server.
1 Connected Village runs on the open source software Bibapp (http://www.bibapp.org), developed by the University of Wisconsin and the University of Illinois
Building research networks to support campus programs [poster]
Poster Session: 2012 E-Science Symposium, sponsored by Lamar Soutter Library, University of Massachusetts Medical School, National Network of Libraries of Medicine (NN/LM) New England Region, and the Boston Library Consortium, April 4, 2012, Shrewsbury, MAThis poster focuses on the methods, tools and outcomes involved in creating two targeted research networks to support large, long-running research programs in the Woods Hole scientific community
Bilan et perspectives de la Recherche en Agriculture Bio-dynamique
L’Agriculture Biodynamique (BD) a été l’objet de nombreux efforts de recherches durant les dernières décennies, bien qu’une partie de la communauté scientifique regarde les méthodes biodynamiques avec scepticisme et les considère comme dogmatiques. Néanmoins, comme cela est montré dans cet article de synthèse, une part non négligeable des résultats présentés dans des revues scientifiques à comité de lecture et issus d’expérimentations contrôlées de plein champ, ou d’étude de cas, montrent des effets des préparations biodynamiques sur le rendement, la qualité du sol et la biodiversité. De plus, les préparations biodynamiques ont un impact environnemental positif en termes d’utilisation et d’efficacité énergétique. Cependant, le mode d’action mécanique des préparations biodynamique est toujours en cours d’investigation en sciences naturelles. Par ailleurs, les méthodes d’évaluations de la qualité basées sur des approches globales (holistiques) sont de plus en plus étudiées et reconnues. L’agriculture BD s’efforce également, comme cela est montré dans plusieurs publications, d’influencer positivement le paysage culturel. La synthèse des données montre le besoin de poursuivre les recherches dans le domaine de la qualité des aliments, de la sécurité alimentaire, des performances environnementales (par ex. l’empreinte écologique), et sur l’influences des pratiques BD sur les animaux d’élevage
ExoClock Project: An open platform for monitoring the ephemerides of Ariel targets with contributions from the public
The Ariel mission will observe spectroscopically around 1000 exoplanets to further characterise their atmospheres. For the mission to be as efficient as possible, a good knowledge of the planets' ephemerides is needed before its launch in 2028. While ephemerides for some planets are being refined on a per-case basis, an organised effort to collectively verify or update them when necessary does not exist. In this study, we introduce the ExoClock project, an open, integrated and interactive platform with the purpose of producing a confirmed list of ephemerides for the planets that will be observed by Ariel. The project has been developed in a manner to make the best use of all available resources: observations reported in the literature, observations from space instruments and, mainly, observations from ground-based telescopes, including both professional and amateur observatories. To facilitate inexperienced observers and at the same time achieve homogeneity in the results, we created data collection and validation protocols, educational material and easy to use interfaces, open to everyone. ExoClock was launched in September 2019 and now counts over 140 participants from more than 15 countries around the world. In this release, we report the results of observations obtained until the 15h of April 2020 for 119 Ariel candidate targets. In total, 632 observations were used to either verify or update the ephemerides of 83 planets. Additionally, we developed the Exoplanet Characterisation Catalogue (ECC), a catalogue built in a consistent way to assist the ephemeris refinement process. So far, the collaborative open framework of the ExoClock project has proven to be highly efficient in coordinating scientific efforts involving diverse audiences. Therefore, we believe that it is a paradigm that can be applied in the future for other research purposes, too
A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy
A real-world newspaper distribution problem with recycling policy is tackled in this work. In order to meet all the complex restrictions contained in such a problem, it has been modeled as a rich vehicle routing problem, which can be more specifically considered as an asymmetric and clustered vehicle routing problem with simultaneous pickup and deliveries, variable costs and forbidden paths (AC-VRP-SPDVCFP). This is the first study of such a problem in the literature. For this reason, a benchmark composed by 15 instances has been also proposed. In the design of this benchmark, real geographical positions have been used, located in the province of Bizkaia, Spain. For the proper treatment of this AC-VRP-SPDVCFP, a discrete firefly algorithm (DFA) has been developed. This application is the first application of the firefly algorithm to any rich vehicle routing problem. To prove that the proposed DFA is a promising technique, its performance has been compared with two other well-known techniques: an evolutionary algorithm and an evolutionary simulated annealing. Our results have shown that the DFA has outperformed these two classic meta-heuristics
Reference values for wrist-worn accelerometer physical activity metrics in England children and adolescents
Background: Over the last decade use of raw acceleration metrics to assess physical activity has increased. Metrics such as Euclidean Norm Minus One (ENMO), and Mean Amplitude Deviation (MAD) can be used to generate metrics which describe physical activity volume (average acceleration), intensity distribution (intensity gradient), and intensity of the most active periods (MX metrics) of the day. Presently, relatively little comparative data for these metrics exists in youth. To address this need, this study presents age- and sex-specific reference percentile values in England youth and compares physical activity volume and intensity profiles by age and sex. Methods: Wrist-worn accelerometer data from 10 studies involving youth aged 5 to 15 y were pooled. Weekday and weekend waking hours were first calculated for youth in school Years (Y) 1&2, Y4&5, Y6&7, and Y8&9 to determine waking hours durations by age-groups and day types. A valid waking hours day was defined as accelerometer wear for ≥ 600 min·d−1 and participants with ≥ 3 valid weekdays and ≥ 1 valid weekend day were included. Mean ENMO- and MAD-generated average acceleration, intensity gradient, and MX metrics were calculated and summarised as weighted week averages. Sex-specific smoothed percentile curves were generated for each metric using Generalized Additive Models for Location Scale and Shape. Linear mixed models examined age and sex differences. Results: The analytical sample included 1250 participants. Physical activity peaked between ages 6.5–10.5 y, depending on metric. For all metrics the highest activity levels occurred in less active participants (3rd-50th percentile) and girls, 0.5 to 1.5 y earlier than more active peers, and boys, respectively. Irrespective of metric, boys were more active than girls (p < .001) and physical activity was lowest in the Y8&9 group, particularly when compared to the Y1&2 group (p < .001). Conclusions: Percentile reference values for average acceleration, intensity gradient, and MX metrics have utility in describing age- and sex-specific values for physical activity volume and intensity in youth. There is a need to generate nationally-representative wrist-acceleration population-referenced norms for these metrics to further facilitate health-related physical activity research and promotion
ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations
The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community
ExoClock Project III: 450 new exoplanet ephemerides from ground and space observations
The ExoClock project has been created with the aim of increasing the
efficiency of the Ariel mission. It will achieve this by continuously
monitoring and updating the ephemerides of Ariel candidates over an extended
period, in order to produce a consistent catalogue of reliable and precise
ephemerides. This work presents a homogenous catalogue of updated ephemerides
for 450 planets, generated by the integration of 18000 data points from
multiple sources. These sources include observations from ground-based
telescopes (ExoClock network and ETD), mid-time values from the literature and
light-curves from space telescopes (Kepler/K2 and TESS). With all the above, we
manage to collect observations for half of the post-discovery years (median),
with data that have a median uncertainty less than one minute. In comparison
with literature, the ephemerides generated by the project are more precise and
less biased. More than 40\% of the initial literature ephemerides had to be
updated to reach the goals of the project, as they were either of low precision
or drifting. Moreover, the integrated approach of the project enables both the
monitoring of the majority of the Ariel candidates (95\%), and also the
identification of missing data. The dedicated ExoClock network effectively
supports this task by contributing additional observations when a gap in the
data is identified. These results highlight the need for continuous monitoring
to increase the observing coverage of the candidate planets. Finally, the
extended observing coverage of planets allows us to detect trends (TTVs -
Transit Timing Variations) for a sample of 19 planets. All products, data, and
codes used in this work are open and accessible to the wider scientific
community.Comment: Recommended for publication to ApJS (reviewer's comments
implemented). Main body: 13 pages, total: 77 pages, 7 figures, 7 tables. Data
available at http://doi.org/10.17605/OSF.IO/P298
Scalability considerations for multivariate graph visualization
Real-world, multivariate datasets are frequently too large to show in their entirety on a visual display. Still, there are many techniques we can employ to show useful partial views-sufficient to support incremental exploration of large graph datasets. In this chapter, we first explore the cognitive and architectural limitations which restrict the amount of visual bandwidth available to multivariate graph visualization approaches. These limitations afford several design approaches, which we systematically explore. Finally, we survey systems and studies that exhibit these design strategies to mitigate these perceptual and architectural limitations
Recommended from our members
ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations
The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community
- …