133 research outputs found

    Limitations of high pressure sputtering for amorphous silicon deposition

    Get PDF
    Amorphous silicon thin films were deposited using the high pressure sputtering (HPS) technique to study the influence of deposition parameters on film composition, presence of impurities, atomic bonding characteristics and optical properties. An optical emission spectroscopy (OES) system has been used to identify the different species present in the plasma in order to obtain appropriate conditions to deposit high purity films. Composition measurements in agreement with the OES information showed impurities which critically depend on the deposition rate and on the gas pressure. We prove that films deposited at the highest RF power and 3.4 × 10^−2 mbar, exhibit properties as good as the ones of the films deposited by other more standard techniques

    Inversion charge study in TMO hole-selective contact-based solar cells

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this article, we study the effect of the inversion charge ( Q inv ) in a solar cell based on the hole-selective characteristic of substoichiometric molybdenum oxide (MoO x ) and vanadium oxide (VO x ) deposited directly on n-type silicon. We measure the capacitance–voltage ( C – V ) curves of the solar cells at different frequencies and explain the results taking into account the variation of the space charge and the existence of Q inv in the c-Si inverted region. The high-frequency capacitance measurements follow the Schottky metal–semiconductor theory, pointing to a low inversion charge influence in these measurements. However, for frequencies lower than 20 kHz, an increase in the capacitance is observed, which we relate to the contribution of the inversion charge. In addition, applying the metal–semiconductor theory to the high-frequency measurements, we have obtained the built-in voltage potential and show new evidence about the nature of the conduction process in this structure. This article provides a better understanding of the transition metal oxide/n-type crystalline silicon heterocontact.The authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid. The authors would also like to thank the Mexican grants program CONACyT for its financial collaboration.Peer ReviewedPostprint (author's final draft

    High-quality single-crystalline epitaxial regrowth on pulsed laser melting of Ti implanted GaAs

    Get PDF
    8 pags., 8 figs.We present a detailed investigation on the formation of supersaturated GaAs using Ti+ implantation followed by nanosecond Pulsed Laser Melting (PLM). We have synthesized high-crystal quality supersaturated GaAs layers with concentrations of Ti above the insulator to metal transition (Mott limit). The Ti-implanted concentration depth profiles after PLM obtained by Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) show a redistribution of Ti impurities within the first hundred nanometers and superficial concentration up to 1 × 1021 cm−3. Raman spectroscopy of these Ti supersaturated, and regrown GaAs samples shows a sharp crystalline peak and tensile strain due to the Ti lattice incorporation. Scanning Transmission Electron Microscopy (STEM) and high-resolution Transmission Electron Microscopy (TEM) images show a good GaAs crystallinity after the PLM process. Energy-Dispersive X-ray Spectroscopy (EDS) reveals an enhanced Ti signal inside bubble-like structures and an appearance of interface oxide layer with all processed samples.Authors would like to acknowledge C.A.I. de Tecnicas Físicas of the Universidad Complutense de Madrid for ion implantation, and the technical. This work was partially supported by the Project MADRIDPV2 (Grant No. P20138/EMT-4308) funded by the Comunidad Autonoma de Madrid with the support of FEDER funds, by the Spanish MINECO (Ministerio de Economía y Competitividad) under grants PID2020-116508RB-I00, PID2020-117498RB-I00 and RTI2018-096498-B-I00. One of the authors (S. Algaidy) would also like to acknowledge financial support from Ministry of Education in the Kingdom of Saudi Arabia. D.Caudevilla would also like to acknowledge a grant (PRE2018-083798), financed by MICINN and European Social Fund. F. Perez-Zenteno would like to acknowledge financial support Mexico grant program CONACyT under grant 786327. The authors would like to also acknowledge the services of CAI de Espectroscopia of UCM, (INA-LMA) de Universidad de Zaragoza and C.A.C.T.I de Universidad de Vigo for Raman, FIB-SEM and SIMS, respectivelyPeer reviewe

    High-quality single-crystalline epitaxial regrowth on pulsed laser melting of Ti implanted GaAs

    Get PDF
    We present a detailed investigation on the formation of supersaturated GaAs using Ti+ implantation followed by nanosecond Pulsed Laser Melting (PLM). We have synthesized high-crystal quality supersaturated GaAs layers with concentrations of Ti above the insulator to metal transition (Mott limit). The Ti-implanted concentration depth profiles after PLM obtained by Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) show a redistribution of Ti impurities within the first hundred nanometers and superficial concentration up to 1 × 1021 redistr cm-3. Raman spectroscopy of these Ti supersaturated, and regrown GaAs samples shows a sharp crystalline peak and tensile strain due to the Ti lattice incorporation. Scanning Transmission Electron Microscopy (STEM) and high-resolution Transmission Electron Microscopy (TEM) images show a good GaAs crystallinity after the PLM process. Energy-Dispersive X-ray Spectroscopy (EDS) reveals an enhanced Ti signal inside bubble-like structures and an appearance of interface oxide layer with all processed samples

    Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    Get PDF
    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available

    Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    Get PDF
    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil

    Going Deeper: Metagenome of a Hadopelagic Microbial Community

    Get PDF
    The paucity of sequence data from pelagic deep-ocean microbial assemblages has severely restricted molecular exploration of the largest biome on Earth. In this study, an analysis is presented of a large-scale 454-pyrosequencing metagenomic dataset from a hadopelagic environment from 6,000 m depth within the Puerto Rico Trench (PRT). A total of 145 Mbp of assembled sequence data was generated and compared to two pelagic deep ocean metagenomes and two representative surface seawater datasets from the Sargasso Sea. In a number of instances, all three deep metagenomes displayed similar trends, but were most magnified in the PRT, including enrichment in functions for two-component signal transduction mechanisms and transcriptional regulation. Overrepresented transporters in the PRT metagenome included outer membrane porins, diverse cation transporters, and di- and tri-carboxylate transporters that matched well with the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. The most dramatic adaptational feature of the PRT microbes appears to be heavy metal resistance, as reflected in the large numbers of transporters present for their removal. As a complement to the metagenome approach, single-cell genomic techniques were utilized to generate partial whole-genome sequence data from four uncultivated cells from members of the dominant phyla within the PRT, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes and Planctomycetes. The single-cell sequence data provided genomic context for many of the highly abundant functional attributes identified from the PRT metagenome, as well as recruiting heavily the PRT metagenomic sequence data compared to 172 available reference marine genomes. Through these multifaceted sequence approaches, new insights have been provided into the unique functional attributes present in microbes residing in a deeper layer of the ocean far removed from the more productive sun-drenched zones above
    • …
    corecore