192 research outputs found

    First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument

    Get PDF
    GOMOS (Global Ozone Monitoring by Occultation of Stars), on board the European platform ENVISAT launched in 2002, is a stellar occultation instrument combining four spectrometers and two fast photometers which measure light at 1 kHz sampling rate in the two visible channels 470–520 nm and 650–700 nm. On the day side, GOMOS does not measure only the light from the star, but also the solar light scattered by the atmospheric molecules. In the summer polar days, Polar Mesospheric Clouds (PMC) are clearly detected using the photometers signals, as the solar light scattered by the cloud particles in the instrument field of view. The sun-synchronous orbit of ENVISAT allows observing PMC in both hemispheres and the stellar occultation technique ensures a very good geometrical registration. Four years of data, from 2002 to 2006, are analyzed up to now. GOMOS data set consists of approximately 10 000 cloud observations all over the eight PMC seasons studied. The first climatology obtained by the analysis of this data set is presented, focusing on the seasonal and latitudinal coverage, represented by global maps. GOMOS photometers allow a very sensitive PMC detection, showing a frequency of occurrence of 100% in polar regions during the middle of the PMC season. According to this work mesospheric clouds seem to be more frequent in the Northern Hemisphere than in the Southern Hemisphere. The PMC altitude distribution was also calculated. The obtained median values are 82.7 km in the North and 83.2 km in the South

    Helioseismology with PICARD

    Full text link
    PICARD is a CNES micro-satellite launched in June 2010 (Thuillier at al. 2006). Its main goal is to measure the solar shape, total and spectral irradiance during the ascending phase of the activity cycle. The SODISM telescope onboard PICARD also allows us to conduct a program for helioseismology in intensity at 535.7 nm (Corbard et al. 2008). One-minute cadence low-resolution full images are available for a so-called medium-ll program, and high-resolution images of the limb recorded every 2 minutes are used to study mode amplification near the limb in the perspective of g-mode search. First analyses and results from these two programs are presented here.Comment: 6 pages, 6 figures, Eclipse on the Coral Sea: Cycle 24 Ascending, GONG 2012 / LWS/SDO-5 / SOHO 27, November 12 - 16, 2012, Palm Cove, Queensland. Accepted for publication in Journal of Physics Conference Series on March 1st 201

    Analysis of a rapid increase of stratospheric ozone during late austral summer 2008 over Kerguelen (49.4° S, 70.3° E)

    Get PDF
    This paper reports on an increase of ozone event observed over Kerguelen (49.4° S, 70.3° E) in relationship with large-scale isentropic transport. This is evidenced by ground-based observations (co-localised radiosonde and SAOZ experiments) together with satellite global observations (Aura/MLS) assimilated into MOCAGE, a Méteo-France model. <br><br> The study is based on the analyses of the first ozonesonde experiment never recorded at the Kerguelen site within the framework of a French campaign called ROCK that took place from April to August 2008. <br><br> Comparisons and interpretations of the observed event are supported by co-localised SAOZ observations, by global mapping of tracers (O<sub>3</sub>, N<sub>2</sub>O and columns of O<sub>3</sub>) from Aura/MLS and Aura/OMI experiments, and by model simulations of Ertel Potential Vorticity initialised by the ECMWF (European Centre for Medium-Range Weather Forecasts) data reanalyses. <br><br> Satellite and ground-based observational data revealed a consistent increase of ozone in the local stratosphere by mid-April 2008. Additionally, Ozone (O<sub>3</sub>) and nitrous oxide (N<sub>2</sub>O) profiles obtained during January–May 2008 using the Microwave Limb Sounder (MLS) aboard the Aura satellite are assimilated into MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle), a global three-dimensional chemistry transport model of Météo-France. The assimilated total O<sub>3</sub> values are consistent with SAOZ ground observations (within ±5%), and isentropic distributions of O<sub>3</sub> match well with maps of advected potential vorticity (APV) derived from the MIMOSA model, a high-resolution advection transport model, and from the ECMWF reanalysis. <br><br> The event studied seems to be related to the isentropic transport of air masses that took place simultaneously in the lower- and middle-stratosphere, respectively from the polar region and from the tropics to the mid-latitudes. <br><br> In fact, the ozone increase observed by mid April 2008 resulted simultaneously: (1) from an equator-ward departure of polar air masses characterised with a high-ozone layer in the lower stratosphere (near the 475 K isentropic level), and (2) from a reverse isentropic transport from the tropics to mid- and high-latitudes in the upper stratosphere (nearby the 700 K level). The increase of ozone observed over Kerguelen from the 16-April ozonesonde profile is thus attributed to a concomitant isentropic transport of ozone in two stratospheric layers: the tropical air moving southward and reaching over Kerguelen in the upper stratosphere, and the polar air passing over the same area but in the lower stratosphere

    New method of Enhancement using Wavelet Transforms applied to SODISM Telescope

    Get PDF
    yesPICARD is a space-based observatory hosting the Solar Diameter Imager and Surface Mapper (SODISM) telescope, which has continuously observed the Sun from July 2010 and up to March 2014. In order to study the fine structure of the solar surface, it is helpful to apply techniques that enhance the images so as to improve the visibility of solar features such as sunspots or faculae. The objective of this work is to develop an innovative technique to enhance the quality of the SODISM images in the five wavelengths monitored by the telescope at 215.0 nm, 393.37 nm, 535.7 nm, 607.1 nm and 782.2 nm. An enhancement technique using interpolation of the high-frequency sub-bands obtained by Discrete Wavelet Transforms (DWT) and the input image is applied to the SODISM images. The input images are decomposed by the DWT as well as Stationary Wavelet Transform (SWT) into four separate sub-bands in horizontal and vertical directions namely, low-low (LL), low-high (LH), high-low (HL) and high–high (HH) frequencies. The DWT high frequency sub-bands are interpolated by a factor 2. The estimated high frequency sub-bands (edges) are enhanced by introducing an intermediate stage using a stationary Wavelet Transform (SWT), and then all these sub-bands and input image are combined and interpolated with half of the interpolation factor α/2, used to interpolate the high-frequency sub-bands, in order to reach the required size for IDWT processing. Quantitative and visual results show the superiority of the proposed technique over a bicubic image resolution enhancement technique. In addition, filling factors for sunspots are calculated from SODISM images and results are presented in this work

    Trajectory Retrieval and Component Investigations of Southern Polar Stratosphere Based on High Resolution Spectroscopy of Totally Eclipsed Moon Surface

    Full text link
    In this paper we present the high resolution spectral observations of the fragment of lunar surface during the total lunar eclipse of December 10, 2011. The observations were carried out with the fiber-fed echelle spectrograph at 1.2-m telescope in Kourovka Astronomical observatory (Ural mountains, central Russia). The observed radiation is transferred by tangent trajectory through the southern polar stratosphere before the reflection from the Moon and spectra contain a number of absorption bands of atmospheric gases (O2, O3, O4, NO2, H2O). High resolution analysis of three O2 bands and O4 absorption effects is used to trace the effective trajectory of solar emission through the stratosphere and to detect the contribution of scattered light. Bands of other gases allow us to measure their abundances along the trajectory.Comment: 13 pages, 9 figure

    A global climatology of the mesospheric sodium layerfrom GOMOS data during the 2002-2008 period

    Get PDF
    This paper presents a climatology of the mesospheric sodium layer built from the processing of 7 years of GOMOS data. With respect to preliminary results already published for the year 2003, a more careful analysis was applied to the averaging of occultations inside the climatological bins (10° in latitude-1 month). Also, the slant path absorption lines of the Na doublet around 589 nm shows evidence of partial saturation that was responsible for an underestimation of the Na concentration in our previous results. The sodium climatology has been validated with respect to the Fort Collins lidar measurements and, to a lesser extent, to the OSIRIS 2003–2004 data. Despite the important natural sodium variability, we have shown that the Na vertical column has a marked semi-annual oscillation at low latitudes that merges into an annual oscillation in the polar regions, a spatial distribution pattern that was unreported so far. The sodium layer seems to be clearly influenced by the mesospheric global circulation and the altitude of the layer shows clear signs of subsidence during polar winter. The climatology has been parameterized by time-latitude robust fits to allow for easy use. Taking into account the non-linearity of the transmittance due to partial saturation, an experimental approach is proposed to derive mesospheric temperatures from limb remote sounding measurements

    Lidar temperature series in the middle atmosphere as a reference data set – Part 1: Improved retrievals and a 20-year cross-validation of two co-located French lidars

    Get PDF
    The objective of this paper and its companion (Wing et al., 2018) is to show that ground-based lidar temperatures are a stable, accurate, and precise data set for use in validating satellite temperatures at high vertical resolution. Long-term lidar observations of the middle atmosphere have been conducted at the Observatoire de Haute-Provence (OHP), located in southern France (43.93°&thinsp;N, 5.71°&thinsp;E), since 1978. Making use of 20 years of high-quality co-located lidar measurements, we have shown that lidar temperatures calculated using the Rayleigh technique at 532&thinsp;nm are statistically identical to lidar temperatures calculated from the non-absorbing 355&thinsp;nm channel of a differential absorption lidar (DIAL) system. This result is of interest to members of the Network for the Detection of Atmospheric Composition Change (NDACC) ozone lidar community seeking to produce validated temperature products. Additionally, we have addressed previously published concerns of lidar–satellite relative warm bias in comparisons of upper-mesospheric and lower-thermospheric (UMLT) temperature profiles. We detail a data treatment algorithm which minimizes known errors due to data selection procedures, a priori choices, and initialization parameters inherent in the lidar retrieval. Our algorithm results in a median cooling of the lidar-calculated absolute temperature profile by 20&thinsp;K at 90&thinsp;km altitude with respect to the standard OHP NDACC lidar temperature algorithm. The confidence engendered by the long-term cross-validation of two independent lidars and the improved lidar temperature data set is exploited in Wing et al. (2018) for use in multi-year satellite validations.</p
    corecore