64 research outputs found

    Sampling location of the inoculum is crucial in designing anodes for microbial fuel cells

    Get PDF
    A Kraft pulp mill effluent was used as the inoculum to form microbial bioanodes under controlled potential at +0.4 V/SCE. Samples were collected at the inlet and outlet of the aerated lagoon of the treatment line. The outlet sample allowed efficient bioanodes to be designed (5.1 A/m²), which included Geobacter and Desulfuromonas sp. in their microbial community. In contrast, the bioanodes formed with the inlet sample did not contain directly connecting anode-respiring bacteria and led to lower currents. It was necessary to reform this bioanode at lower applied potential (-0.2 V/SCE) to select more efficient electroactive species and increase the current density to 5 A/m²

    Harvesting Electricity with Geobacter bremensis Isolated from Compost

    Get PDF
    Electrochemically active (EA) biofilms were formed on metallic dimensionally stable anode-type electrode (DSA), embedded in garden compost and polarized at +0.50 V/SCE. Analysis of 16S rRNA gene libraries revealed that biofilms were heavily enriched in Deltaproteobacteria in comparison to control biofilms formed on non-polarized electrodes, which were preferentially composed of Gammaproteobacteria and Firmicutes. Among Deltaproteobacteria, sequences affiliated with Pelobacter and Geobacter genera were identified. A bacterial consortium was cultivated, in which 25 isolates were identified as Geobacter bremensis. Pure cultures of 4 different G. bremensis isolates gave higher current densities (1400 mA/m2 on DSA, 2490 mA/m2 on graphite) than the original multi-species biofilms (in average 300 mA/m2 on DSA) and the G. bremensis DSM type strain (100–300 A/m2 on DSA; 2485 mA/m2 on graphite). FISH analysis confirmed that G. bremensis represented a minor fraction in the original EA biofilm, in which species related to Pelobacter genus were predominant. The Pelobacter type strain did not show EA capacity, which can explain the lower performance of the multi-species biofilms. These results stressed the great interest of extracting and culturing pure EA strains from wild EA biofilms to improve the current density provided by microbial anodes

    Benzoxazinoids in Root Exudates of Maize Attract Pseudomonas putida to the Rhizosphere

    Get PDF
    Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs) have also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have studied the impact of BXs on the interaction between maize and Pseudomonas putida KT2440, a competitive coloniser of the maize rhizosphere with plant-beneficial traits. Chromatographic analyses revealed that DIMBOA is the main BX compound in root exudates of maize. In vitro analysis of DIMBOA stability indicated that KT2440 tolerance of DIMBOA is based on metabolism-dependent breakdown of this BX compound. Transcriptome analysis of DIMBOA-exposed P. putida identified increased transcription of genes controlling benzoate catabolism and chemotaxis. Chemotaxis assays confirmed motility of P. putida towards DIMBOA. Moreover, colonisation essays in soil with Green Fluorescent Protein (GFP)-expressing P. putida showed that DIMBOA-producing roots of wild-type maize attract significantly higher numbers of P. putida cells than roots of the DIMBOA-deficient bx1 mutant. Our results demonstrate a central role for DIMBOA as a below-ground semiochemical for recruitment of plant-beneficial rhizobacteria during the relatively young and vulnerable growth stages of maize

    Impact of plants on the diversity and activity of methylotrophs in soil

    Get PDF
    Background Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. Results Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. Conclusion In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle

    Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?

    Full text link
    peer reviewedBackground Aboveground, plants release volatile organic compounds (VOCs) that act as chemical signals between neighbouring plants. It is now well documented that VOCs emitted by the roots in the plant rhizosphere also play important ecological roles in the soil ecosystem, notably in plant defence because they are involved in interactions between plants, phytophagous pests and organisms of the third trophic level. The roles played by root-emitted VOCs in between- and within-plant signalling, however, are still poorly documented in the scientific literature. Scope Given that (1) plants release volatile cues mediating plant-plant interactions aboveground, (2) roots can detect the chemical signals originating from their neighbours, and (3) roots release VOCs involved in biotic interactions belowground, the aim of this paper is to discuss the roles of VOCs in between- and within-plant signalling belowground. We also highlight the technical challenges associated with the analysis of root-emitted VOCs and the design of experiments targeting volatile-mediated root-root interactions. Conclusions We conclude that root-root interactions mediated by volatile cues deserve more research attention and that both the analytical tools and methods developed to study the ecological roles played by VOCs in interplant signalling aboveground can be adapted to focus on the roles played by root-emitted VOCs in between- and within-plant signalling

    Root exudate-consuming microbial community structure

    No full text
    International audienc
    • …
    corecore