636 research outputs found

    Ab-initio simulation of high-temperature liquid selenium

    Full text link
    Ab initio molecular dynamics simulation is used to investigate the structure and dynamics of liquid Se at temperatures of 870 and 1370~K. The calculated static structure factor is in excellent agreement with experimental data. The calculated radial distribution function gives a mean coordination number close to 2, but we find a significant fraction of one-fold and three-fold atoms, particularly at 1370~K, so that the chain structure is considerably disrupted. The self-diffusion coefficient has values (∼1×10−8\sim 1 \times 10^{-8}~m~s−1^{-1}) typical of liquid metals.Comment: 10 pages, 4 Poscript figures, uses REVTE

    Ab Initio Molecular Dynamics on the Electronic Boltzmann Equilibrium Distribution

    Get PDF
    We prove that for a combined system of classical and quantum particles, it is possible to write a dynamics for the classical particles that incorporates in a natural way the Boltzmann equilibrium population for the quantum subsystem. In addition, these molecular dynamics do not need to assume that the electrons immediately follow the nuclear motion (in contrast to any adiabatic approach), and do not present problems in the presence of crossing points between different potential energy surfaces (conical intersections or spin-crossings). A practical application of this molecular dynamics to study the effect of temperature in molecular systems presenting (nearly) degenerate states - such as the avoided crossing in the ring-closure process of ozone - is presented.Comment: published in New J. Phy

    Molecular genetics and pathophysiology of 17 beta-hydroxysteroid dehydrogenase 3 deficiency.

    Get PDF
    Autosomal recessive mutations in the 17 beta-hydroxysteroid dehydrogenase 3 gene impair the formation of testosterone in the fetal testis and give rise to genetic males with female external genitalia. Such individuals are usually raised as females, but virilize at the time of expected puberty as the result of increases in serum testosterone. Here we describe mutations in 12 additional subjects/families with this disorder. The 14 mutations characterized to date include 10 missense mutations, 3 splice junction abnormalities, and 1 small deletion that results in a frame shift. Three of these mutations have occurred in more than 1 family. Complementary DNAs incorporating 9 of the 10 missense mutations have been constructed and expressed in reporter cells; 8 of the 9 missense mutations cause almost complete loss of enzymatic activity. In 2 subjects with loss of function, missense mutations testosterone levels in testicular venous blood were very low. Considered together, these findings strongly suggest that the common mechanism for testosterone formation in postpubertal subjects with this disorder is the conversion of circulating androstenedione to testosterone by one or more of the unaffected 17 beta-hydroxysteroid dehydrogenase isoenzymes

    A Self-Consistent First-Principles Technique Having Linear Scaling

    Full text link
    An algorithm for first-principles electronic structure calculations having a computational cost which scales linearly with the system size is presented. Our method exploits the real-space localization of the density matrix, and in this respect it is related to the technique of Li, Nunes and Vanderbilt. The density matrix is expressed in terms of localized support functions, and a matrix of variational parameters, L, having a finite spatial range. The total energy is minimized with respect to both the support functions and the elements of the L matrix. The method is variational, and becomes exact as the ranges of the support functions and the L matrix are increased. We have tested the method on crystalline silicon systems containing up to 216 atoms, and we discuss some of these results.Comment: 12 pages, REVTeX, 2 figure

    Towards a Linear-Scaling DFT Technique: The Density Matrix Approach

    Full text link
    A recently proposed linear-scaling scheme for density-functional pseudopotential calculations is described in detail. The method is based on a formulation of density functional theory in which the ground state energy is determined by minimization with respect to the density matrix, subject to the condition that the eigenvalues of the latter lie in the range [0,1]. Linear-scaling behavior is achieved by requiring that the density matrix should vanish when the separation of its arguments exceeds a chosen cutoff. The limitation on the eigenvalue range is imposed by the method of Li, Nunes and Vanderbilt. The scheme is implemented by calculating all terms in the energy on a uniform real-space grid, and minimization is performed using the conjugate-gradient method. Tests on a 512-atom Si system show that the total energy converges rapidly as the range of the density matrix is increased. A discussion of the relation between the present method and other linear-scaling methods is given, and some problems that still require solution are indicated.Comment: REVTeX file, 27 pages with 4 uuencoded postscript figure

    The Structure, Dynamics and Electronic Structure of Liquid Ag-Se Alloys Investigated by Ab Initio Simulation

    Full text link
    Ab initio molecular-dynamics simulations have been used to investigate the structure, dynamics and electronic properties of the liquid alloy Ag(1-x)Se(x) at 1350 K and at the three compositions x=0.33, 0.42 and 0.65. The calculations are based on density-functional theory in the local density approximation and on the pseudopotential plane-wave method. The reliability of the simulations is confirmed by detailed comparisons with very recent neutron diffraction results for the partial structure factors and radial distribution functions (RDF) of the stoichiometric liquid Ag2Se. The simulations show a dramatic change of the Se-Se RDF with increasing Se content. This change is due to the formation of Se clusters bound by covalent bonds, the Se-Se bond length being almost the same as in pure c-Se and l-Se. The clusters are predominantly chain-like, but for higher x a large fraction of 3-fold coordinated Se atoms is also found. It is shown that the equilibrium fractions of Se present as isolated atoms and in clusters can be understood on a simple charge-balance model based on an ionic interpretation. The Ag and Se diffusion coefficients both increase with Se content, in spite of the Se clustering. An analysis of the Se-Se bond dynamics reveals surprisingly short bond lifetimes of less than 1 ps. The changes in the density of states with composition arise directly from the formation of Se-Se covalent bonds. Results for the electronic conductivity obtained using the Kubo-Greenwood approximation are in adequate agreement with experiment for l-Ag2Se, but not for the high Se contents. Possible reasons for this are discussed.Comment: 14 pages, Revtex, 14 Postscript figures embedded in the tex

    Composition Dependence of the Structure and Electronic Properties of Liquid Ga-Se Alloys Studied by Ab Initio Molecular Dynamics Simulation

    Full text link
    Ab initio molecular dynamics simulation is used to study the structure and electronic properties of the liquid Ga-Se system at the three compositions Ga2_2Se, GaSe and Ga2_2Se3_3, and of the GaSe and Ga2_2Se3_3 crystals. The calculated equilibrium structure of GaSe crystal agrees well with available experimental data. The neutron-weighted liquid structure factors calculated from the simulations are in reasonable agreement with recent neutron diffraction measurements. Simulation results for the partial radial distribution functions show that the liquid structure is closely related to that of the crystals. A close similarity between solid and liquid is also found for the electronic density of states and charge density. The calculated electronic conductivity decreases strongly with increasing Se content, in accord with experimental measurements.Comment: REVTeX, 8 pages and 12 uuencoded PostScript figures, submitted to Phys. Rev. B. corresponding author: [email protected]

    Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells

    Get PDF
    Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes

    The Breast Cancer and the Environment Research Centers: Transdisciplinary Research on the Role of the Environment in Breast Cancer Etiology

    Get PDF
    ObjectivesWe introduce and describe the Breast Cancer and the Environment Research Centers (BCERC), a research network with a transdisciplinary approach to elucidating the role of environmental factors in pubertal development as a window on breast cancer etiology. We describe the organization of four national centers integrated into the BCERC network.Data sourcesInvestigators use a common conceptual framework based on multiple levels of biologic, behavioral, and social organization across the life span. The approach connects basic biologic studies with rodent models and tissue culture systems, a coordinated multicenter epidemiologic cohort study of prepubertal girls, and the integration of community members of breast cancer advocates as key members of the research team to comprise the network.Data extractionRelevant literature is reviewed that describes current knowledge across levels of organization. Individual research questions and hypotheses in BCERC are driven by gaps in our knowledge that are presented at genetic, metabolic, cellular, individual, and environmental (physical and social) levels.Data synthesisAs data collection on the cohort, animal experiments, and analyses proceed, results will be synthesized through a transdisciplinary approach.ConclusionCenter investigators are addressing a large number of specific research questions related to early pubertal onset, which is an established risk factor for breast cancer. BCERC research findings aimed at the primary prevention of breast cancer will be disseminated to the scientific community and to the public by breast cancer advocates, who have been integral members of the research process from its inception
    • …
    corecore