3,752 research outputs found

    Long-time and unitary properties of semiclassical initial value representations

    Full text link
    We numerically compare the semiclassical ``frozen Gaussian'' Herman-Kluk propagator [Chem. Phys. 91, 27 (1984)] and the ``thawed Gaussian'' propagator put forward recently by Baranger et al. [J. Phys. A 34, 7227 (2001)] by studying the quantum dynamics in some nonlinear one-dimensional potentials. The reasons for the lack of long time accuracy and norm conservation in the latter method are uncovered. We amend the thawed Gaussian propagator with a global harmonic approximation for the stability of the trajectories and demonstrate that this revised propagator is a true alternative to the Herman-Kluk propagator with similar accuracy.Comment: 14 pages, 4 figures, corrected typos and figure 1 (d

    Spectra of Harmonium in a magnetic field using an initial value representation of the semiclassical propagator

    Full text link
    For two Coulombically interacting electrons in a quantum dot with harmonic confinement and a constant magnetic field, we show that time-dependent semiclassical calculations using the Herman-Kluk initial value representation of the propagator lead to eigenvalues of the same accuracy as WKB calculations with Langer correction. The latter are restricted to integrable systems, however, whereas the time-dependent initial value approach allows for applications to high-dimensional, possibly chaotic dynamics and is extendable to arbitrary shapes of the potential.Comment: 11 pages, 1 figur

    Kohn-Sham equations for nanowires with direct current

    Full text link
    The paper describes the derivation of the Kohn-Sham equations for a nanowire with direct current. A value of the electron current enters the problem as an input via a subsidiary condition imposed by pointwise Lagrange multiplier. Using the constrained minimization of the Hohenberg-Kohn energy functional, we derive a set of self-consistent equations for current carrying orbitals of the molecular wire

    The role of contacts in molecular electronics

    Get PDF
    Molecular electronic devices are the upmost destiny of the miniaturization trend of electronic components. Although not yet reproducible on large scale, molecular devices are since recently subject of intense studies both experimentally and theoretically, which agree in pointing out the extreme sensitivity of such devices on the nature and quality of the contacts. This chapter intends to provide a general theoretical framework for modelling electronic transport at the molecular scale by describing the implementation of a hybrid method based on Green function theory and density functional algorithms. In order to show the presence of contact-dependent features in the molecular conductance, we discuss three archetypal molecular devices, which are intended to focus on the importance of the different sub-parts of a molecular two-terminal setup.Comment: 17 pages, 8 figure

    Yang-Lee zeroes for an urn model for the separation of sand

    Full text link
    We apply the Yang-Lee theory of phase transitions to an urn model of separation of sand. The effective partition function of this nonequilibrium system can be expressed as a polynomial of the size-dependent effective fugacity zz. Numerical calculations show that in the thermodynamic limit, the zeros of the effective partition function are located on the unit circle in the complex zz-plane. In the complex plane of the actual control parameter certain roots converge to the transition point of the model. Thus the Yang-Lee theory can be applied to a wider class of nonequilibrium systems than those considered previously.Comment: 4 pages, 3 eps figures include

    Electron-Ion Interaction Effects in Attosecond Time-Resolved Photoelectron Spectra

    Get PDF
    Photoionization by attosecond (as) extreme ultraviolet (xuv) pulses into the laser-dressed continuum of the ionized atom is commonly described in strong-field approximation (SFA), neglecting the Coulomb interaction between the emitted photoelectron (PE) and residual ion. By solving the time-dependent Sch\"{o}dinger equation (TDSE), we identify a temporal shift ÎŽÏ„\delta \tau in streaked PE spectra, which becomes significant at small PE energies. Within an eikonal approximation, we trace this shift to the combined action of Coulomb and laser forces on the released PE, suggesting the experimental and theoretical scrutiny of their coupling in streaked PE spectra. The initial state polarization effect by the laser pulse on the xuv streaked spectrum is also examined.Comment: 9 pages, Accepted by Phys. Rev.

    Quantum approach to the thermalization of the toppling pencil interacting with a finite bath

    Get PDF
    We investigate the longstanding problem of thermalization of quantum systems coupled to an environment by focusing on a bistable quartic oscillator interacting with a finite number of harmonic oscillators. In order to overcome the exponential wall that one usually encounters in grid-based approaches to solve the time-dependent Schrodinger equation of the extended system, methods based on the time-dependent variational principle are best suited. Here we will apply the method of coupled coherent states [D. V. Shalashilin and M. S. Child, J. Chem. Phys. 113, 10028 (2000)]. By investigating the dynamics of an initial wave function on top of the barrier of the double well, it will be shown that only a handful of oscillators with suitably chosen frequencies, starting in their ground states, is enough to drive the bistable system close to its uncoupled ground state. The long-time average of the double-well energy is found to be a monotonously decaying function of the number of environmental oscillators in the parameter range that was numerically accessible

    Tunneling in a cavity

    Full text link
    The mechanism of coherent destruction of tunneling found by Grossmann et al. [Phys. Rev. Lett. 67, 516 (1991)] is studied from the viewpoint of quantum optics by considering the photon statistics of a single mode cavity field which is strongly coupled to a two-level tunneling system (TS). As a function of the interaction time between TS and cavity the photon statistics displays the tunneling dynamics. In the semi-classical limit of high photon occupation number nn, coherent destruction of tunneling is exhibited in a slowing down of an amplitude modulation for certain parameter ratios of the field. The phenomenon is explained as arising from interference between displaced number states in phase space which survives the large nn limit due to identical n−1/2n^{-1/2} scaling between orbit width and displacement.Comment: 4 pages Revtex, 2 PS-figures, appears in The Physical Review

    Exact variational dynamics of the multimode Bose-Hubbard model based on SU(M) coherent states

    Get PDF
    We propose a variational approach to the dynamics of the Bose-Hubbard model beyond the mean-field approximation. To develop a numerical scheme, we use a discrete overcomplete set of Glauber coherent states and its connection to the generalized coherent states studied in depth by Perelomov [Perelomov, Generalized Coherent States and Their Applications (Springer-Verlag, Berlin, 1986)]. The variational equations of motion of the generalized coherent state parameters as well as of the coefficients in an expansion of the wave function in terms of those states are derived and solved for many-particle problems with large particle numbers S and increasing mode number M. For M = 6, it is revealed that the number of complex-valued parameters that have to be propagated is more than one order of magnitude less than in an expansion in terms of Fock states

    Semiclassical Coherent States propagator

    Get PDF
    In this work, we derived a semiclassical approximation for the matrix elements of a quantum propagator in coherent states (CS) basis that avoids complex trajectories, it only involves real ones. For that propose, we used the, symplectically invariant, semiclassical Weyl propagator obtained by performing a stationary phase approximation (SPA) for the path integral in the Weyl representation. After what, for the transformation to CS representation SPA is avoided, instead a quadratic expansion of the complex exponent is used. This procedure also allows to express the semiclassical CS propagator uniquely in terms of the classical evolution of the initial point, without the need of any root search typical of Van Vleck Gutzwiller based propagators. For the case of chaotic Hamiltonian systems, the explicit time dependence of the CS propagator has been obtained. The comparison with a \textquotedbl{}realistic\textquotedbl{} chaotic system that derives from a quadratic Hamiltonian, the cat map, reveals that the expression here derived is exact up to quadratic Hamiltonian systems.Comment: 13 pages, 2 figure. Accepted for publication in PR
    • 

    corecore