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In this work, we derived a semiclassical approximation for the matrix elements of a quantum
propagator in coherent states (CS) basis that avoids complex trajectories, it only involves real ones.
For that propose, we used the, symplectically invariant, semiclassical Weyl propagator obtained by
performing a stationary phase approximation (SPA) for the path integral in the Weyl representation.
After what, for the transformation to CS representation SPA is avoided, instead a quadratic expan-
sion of the complex exponent is used. This procedure also allows to express the semiclassical CS
propagator uniquely in terms of the classical evolution of the initial point, without the need of any
root search typical of Van Vleck Gutzwiller based propagators. For the case of chaotic Hamiltonian
systems, the explicit time dependence of the CS propagator has been obtained. The comparison
with a "realistic" chaotic system that derives from a quadratic Hamiltonian, the cat map, reveals
that the expression here derived is exact up to quadratic Hamiltonian systems.

PACS numbers: 03.65.Sq, 05.45.Mt

I. INTRODUCTION

Path integrals appear as a useful calculation tool for
many quantum and statistical mechanical problems [1],
while CS are widely known to represent quantum states
with the most classical resemblance. In the case of an
harmonic oscillator, they obey the classical equations of
motion and are minimal uncertain states. Also, the CS
form an overcomplete basis which is a necessary ingre-
dient for the construction of a path integral [2]. It im-
plies the existence of several forms of path integrals, all
quantum mechanically equivalent, but each leading to a
different semiclassical limit. The formulation of path in-
tegrals applied to CS has become widely used in many
areas despite the very shaky mathematical background
[3].

For the propagator in a mixed or coordinates repre-
sentation, the so-called Herman–Kluk (HK) formula and
its generalizations [4–6], semiclassicaly derived in [7, 8],
are routinely used nowadays and expresses the propa-
gator as an integral over the overcomplete basis of CS.
While for the case of the propagator in CS representa-
tion, a complete semiclassical derivation was performed
by Baranger et al [9], also in [10] a Weyl ordering treat-
ment has been performed. Although mathematically cor-
rect, both constructions [9] and [10] involve an analytic
continuation to complex trajectories, while the classical
system only involves real canonical variables. As was re-
cently pointed out, the CS path integral breaks down in
certain cases [11]. When the Hamiltonian involves terms
that are non linear in generators, neither the action sug-
gested by Weyl ordering nor the one constructed by nor-
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mal ordering gives correct results. In order to understand
the quantum classical limit it is imperious to have a cor-
rect semiclassical expression of the quantum propagator
in the most classical states, that is, in CS.

In this work, we derive an accurate semiclassical ex-
pression for the CS propagator that avoids complex tra-
jectories, it only involves real ones. While the, symplecti-
cally invariant, semiclassical Weyl propagator is obtained
by performing a SPA from the path integral in the Weyl
representation, for the transformation to CS representa-
tion SPA is avoided, instead a quadratic expansion of the
complex exponent is used. This procedure also allows
to express the semiclassical CS propagator uniquely in
terms of objects obtained directly by the classical evolu-
tion of the flux through the initial point, without the need
of any further trajectory search that are typical proce-
dures of Van Vleck Gutzwiller (VVG) based propagators
[12, 13]. Also, for the case of chaotic Hamiltonian sys-
tems, the explicit time dependence of the CS propagator
has been obtained only in terms of the action of the or-
bit through the initial point, the Lyapunov exponent and
the stable and unstable directions. The comparison with
a "realistic" chaotic system, the cat map, reveals that
the expression (37) here derived is exact up to quadratic
Hamiltonian systems. While, in the CS representation,
a common SPA does not give accurate results with real
trajectories.

This paper is organized as follows: In section II we
introduce Weyl Wigner representation of the quantum
propagator and its close connection with the center gen-
erating function of the canonical transformations of clas-
sical mechanics [14] that will be used all along this work.
Then we study the coherent states propagator obtained
from a path integration in the Weyl Wigner represen-
tation by means of the SPA. We will see in section IV
that the expressions obtained in this way failed to give
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accurate results.
For section III instead of a simple SPA we expand the

center action up to quadratic terms and there after we
perform the phase space integration from the Weyl prop-
agator to the CS propagator. In this way, we obtain a
general semiclassical expression of the matrix elements
of the propagator in the CS basis that only involves real
trajectories. We show how the quadratic expansion of
the center generating function allowed to express the
semiclassical CS propagator uniquely in terms of objects
obtained directly by the classical evolution of the flux
through the initial point, without the need of any further
search of trajectories. In this section we also perform a
comparison of the here derived expression with the well
known Initial Value Representation (IVR) methods that
includes the HK propagator and Heller‘s Thawed Gaus-
sian Approximation (TGA).

In Section IV, the study of continuous Hamiltonian sys-
tems is projected to maps on Poincaré’s sections. The ex-
plicit time dependence of the CS propagator is obtained
only in terms of the action of the orbit through the initial
point, the Lyapunov exponent and the stable and unsta-
ble directions. Then we study the particular case of the
cat map where not only the semiclassical theory is exact
but also the linear approximation is valid throughout the
torus. After the semi classical expressions here deduced
are adapted for a torus phase space, we then see that the
expression obtained in section III gives results that coin-
cides exactly with the numerically computed matrix ele-
ments for the cat maps. However the expressions deduced
in section II from a common SPA do not give accurate
results with real trajectories. Finally, we give our conclu-
sions in Section V. The appendix is devoted to the Weyl
Wigner representation of quantum mechanics in terms of
reflections in phase space.

II. COHERENT STATES PROPAGATOR AND

STATIONARY PHASE

The coherent state |X〉, centered on the point X =
(P,Q) in phase space, is obtained by translating the
ground state of the harmonic oscillator, its position rep-
resentation is

〈q |X〉 =
(mω

π~

) 1
4

exp

[
− ω

2~
(q −Q)2+i

P

~

(
q− Q

2

)]
.

(1)
Without loss of generality, unit frequency (ω = 1) and
mass (m = 1) are chosen for the harmonic oscillator. The
overlap of two CS is then

〈X |X ′〉 = exp

[
− (X −X ′)2

4~
− i

2~
X ∧X ′

]
, (2)

with the wedge product

X ∧X ′ = PQ′ −QP ′ = (JX) .X ′.

The second equation also defines the symplectic matrix
J , that is

J =

[
0 −1
1 0

]
. (3)

In what follows, we will use the centers and chords for-
mulation developed by Ozorio de Almeida [14] for both
classical and quantum mechanics.

Let us write the quantum propagator Û t in terms of its,
symplectically invariant, center or Weyl Wigner symbol
U t(x) [14],

Û t=
1

(π~)l

ˆ

dxR̂xU
t(x) and U t(x)= tr

[
R̂xÛ

t
]
, (4)

where
´

dx is an integral over the whole phase space of l

degrees of freedom, while R̂x denotes the set of reflection
operators thought points x = (p, q) in phase space [14]
(see Appendix). Hence, the matrix elements of the uni-

tary propagator Û t, that governs the quantum evolution
of an l degrees of freedom system, in the CS basis, are

〈X1|Û t|X2〉 =
(

1

π~

)l ˆ

〈X1|U t(x)R̂x|X2〉dx. (5)

The action of a reflection operator R̂x on a coherent state
|X〉 is the x reflected coherent state (see Appendix)

R̂x |X〉 = e
i
~
X∧x |2x−X〉 . (6)

Inserting (6) and (2) in expression (5) the propagator in
the CS representation is obtained from the Weyl propa-
gator as

〈X1|Û t|X2〉=e
iX1∧X2

2~

ˆ

dx

(π~)
l
e

[
i
~
x∧ξ0− (X−x)2

~

]

U t(x), (7)

with ξ0 ≡ (X1 −X2) the chord joining the points X1 and
X2, while X = 1/2 (X1 +X2) denotes their mid point.
The CS representation is overcomplete. Indeed, just

the diagonal elements 〈X |Û t|X〉 known as the Husimi
representation, are enough for a complete representa-
tion of quantum mechanics. As equation (7) shows, the
Husimi representation is a Gaussian smoothing of the
Weyl-Wigner’s.

For a Hamiltonian system, the propagator is Û t =

exp[−i t
~
Ĥ] with Ĥ the quantum Hamiltonian operator

of the system. As has been shown in [14], for sufficiently
small times, the Weyl symbol of the propagator is

U t(x) = | det[1−(J t
2
H)2]| 14 exp

[
− it

~
H(x)

]
+O((t~)

2
), (8)

where H(x) = tr
[
R̂xĤ

]
is the Weyl symbol of the Hamil-

tonian operator Ĥ, while H is the corresponding Hessian
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matrix evaluated at the point x. In analogy to the clas-
sical theory, H(x) is, within O(~), the classical Hamilto-
nian Hc(x). Also, if H(x) is quadratic (8) represents a
unitary operator.

For longer times t, the composing of an even number
k of unitary operators for times ε = t/k is performed.
In the Weyl representation, such a composition results in
[14]

U t(x) =

ˆ

dxk
i

(π~)kl

k∏

j=1

U
t
k (xj)e

i
~
∆k+1(x,x1,··· ,xk), (9)

with dxk
i = dxk · · · dx1 and ∆k+1(x, x1, · · · , xk) denotes

the symplectic area of the polygon with endpoints cen-
tered on x and whose j′th side is centered on xj . The
formula (9) is exact, while in the limit k → ∞, the ex-
pression (8) can be inserted for U t

k
(x). In which limit,

the amplitude vanishes, yielding to the path integral

U t(x)= lim
k→∞

ˆ

dxk
i

(π~)kl
e

i
~ [∆k+1(x,x1,···,xk)− t

k

∑k
j=1H(xj)]. (10)

Since (10) is an ordinary multiple integral, we need not
worry about the definition of the “path space” [14].

Analogously, for classical mechanics, the center gener-
ating function of the canonical transformation resulting
from composing of an even number k of canonical trans-
formations for time ε = t/k in the limit where k → ∞,
is [14]

St(x) = lim
k→∞

− t

k

k∑

j=1

Hc(xj)+∆k+1(x, x1,· · ·, xk). (11)

The polygon ∆k+1 has one large side ξ passing through
the center x and k small chords tangents to the orbit
as k → ∞ such that ∂St/∂xj = 0. Hence, the center

variational principle is obtained: The center action

St
γ(x) =

˛

x

p · dq −
ˆ

γ

Hc(x)dt (12)

is stationary along the classical trajectory γ. The paths
to be compared always have their endpoints centered on
the point x. The second integral is evaluated along this
path, whereas the first integral is closed off by the chord
centered on x. Then St

γ(x) is the classical center generat-
ing function of the classical trajectory γ, from which the
chord ξ joining the initial and final point of the trajectory
is obtained

ξ = −J
∂St

γ(x)

∂x
. (13)

The semiclassical approximation consist in evaluating
the path integral in the SPA. The result is the leading
term in a series of increasing powers of ~ . For the Weyl
propagator this was obtained in [14] by performing a SPA
in (10). The phase of the integral in (10) coincides with

the center action St
γ(x) for the polygonal path γ. Hence,

the center variational principle ensures that the phase
is stationary for the classical trajectories centered on x,
then yielding

U t(x)SC =
∑

γ

2L exp
{
i~−1St

γ(x) + iπ2α
t
γ

}

| det(Mt + 1)| 12
. (14)

The summation is over all the classical orbits γ whose
center lies on the point x after having evolved a time t
[14]. Then St

γ(x) is the classical center generating func-

tion of the orbit, while Mt =
∂2St

γ(x)

∂x2 stand for the mon-
odromy matrix and αt

γ its Morse index.
The metaplectic operators form a "double covering" of

the symplectic matrices, since this property gives contri-
butions to the Morse index [15]. If we follow the evolu-
tion of the symplectic matrix as the trajectory evolves,
each time Mt crosses a manifold where det(Mt +1) = 0
(caustic) the path contribution undergoes a divergence
changing the sign from −∞ to ∞. This change of the
sign lets the quantum phase proceed by π

2 . The Morse
index αt

γ therefore changes by ±1 when crossing caustics
[12, 16].

For sufficiently short times such that the variational
problem has an unique solution there will have a single
chord. Although for longer times, there will be bifurca-
tions producing more chords. In the case of a single orbit,
the corresponding Morse index αt

γ = 0.
As was shown in [14], in order to obtain the coordi-

nates representation of the semiclassical propagator from
the semiclassical propagator in the Weyl representation
(14), a Fourier transformation must be performed leading
to the Van Vleck propagator. However, the Weyl prop-
agator of equation (14) suffers for caustic singularities
whenever | det(Mt + 1)| = 0, while the Van Vleck prop-
agator has caustic singularities for other points in phase

space, (namely when
∂2St

γ(q,q
′)

∂q∂q′ = 0, with St
γ(q, q

′) the

action of the orbit γ that is a type I generating function
for the associated canonical transformation.

In order to obtain a coherent state path integral, ex-
pression (10) is inserted in the coherent state propagator
(7) so that

〈X1|Û t|X2〉=limk→∞
´ dxk

i

(π~)kl e
i
~{X1∧X2

2 − t
k

∑k
n=1 H(xn)}

×
´

dx
(~π)l e

{
i
~
[x∧ξ0+∆k+1(x,x1,···,xk)]− (X−x)2

~

}

. (15)

Recalling the linear relation of ∆k+1 with x,

∆k+1(x, x1,· · ·, xk) =C+ξ∧x, with ξ=

k∑

j=1

(−1)jxj , (16)

the x integral in (15) is quadratic and can be solved ex-
actly, yielding

〈X1|Û t|X2〉 = e−
iX1∧X2

2~ limk→∞
´ dxk

i

(π~)kl e
− 1

4~ (ξ̄−ξ0)
2

×e
i
~{∆k+1(X,x1,···xk)− t

k

∑k
n=1 H(xn)}. (17)
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Here ξ̄ is the chord passing through the mid point X .
Note that, according to (16) the chord ξ̄ only depends
on the other centers x1, · · · , xk. The usual semiclassi-
cal limit of the CS propagator is obtained, in the limit
where ~ → 0, with SPA in (17). The phase in (17) is the
center generating function (11). According to the center
variational principle the path integral is stationary for
classical orbits. Hence, analogously to (14), a SPA in
(17) yields

〈X1|Û t|X2〉SC1=
∑

γ

2le

{
i
~ [S̃

t
γ(X)− 1

2X1∧X2]− 1
4~ (ξ

t
γ−ξ0)

2
}

| det(Mγ + 1)| 12
.

(18)
The sum runs now over all the classical orbits γ whose
center lies on the point X , while ξtγ is the chord join-
ing the initial and final points of the orbit γ. For
sufficiently short times, there will have a single chord,
while for longer times, bifurcations will produce more
chords. However, as a consequence of a Gaussian cut-
off on the length of the chords, the amplitude will be
severely damped if the classical chord ξtγ is long. For

the center generating function, St
γ(x), we have defined

S̃t
γ(x) = St

γ(x) + ~
π
2α

t
γ in order to include the Morse

index in the action.
By means of an analytic continuation, dos Santos and

de Aguiar have obtained in [10] an expression similar
to (18) but involving complex trajectories. Although,
with real trajectories, expression (18) does not give ac-
curate results even for quadratic Hamiltonian systems,
as is shown in Figure 2. The SPA used to go from (17)
to (18) neglects the Gaussian factor (ξ̄ − ξ0)

2, leading
to a real stationary trajectory. If the factor is taken into
account, the exponent becomes complex and the approxi-
mation would involve complex trajectories. This approx-
imation is also exact for quadratic Hamiltonians, but has
the drawback of dealing with complex trajectories.

Alternatively, to obtain a semiclassical approximation
for the CS propagator we can take advantage of the semi-
classical approximation for the propagator in the Weyl
representation (14). After what, the transformation to
CS representation is performed through (7) so that,

〈X1 | Û t
SC |X2〉=

(
2

π~

)l

e
i
2~X1∧X2

×
∑

γ

ˆ

exp− 1
~
(X − x)2

|det (Mγ + 1)|
1
2

e
i
~ [S̃

t
γ(x)+ξ0∧x]dx. (19)

This procedure is equivalent to perform in (15) a SPA for
the dxk

i variables before integrating in dx.
In order to perform the x integration in (19) by a usual

SPA, the stationary phase point, x0, must satisfies

ξ(x0) = − J
∂St

γ(x)

∂x

∣∣∣∣
x=x0

= ξ0.

That is, the chord ξ(x0) through x0 must be equal to
ξ0 = X1 − X2, the chord that joins the points X1 and

X2. Hence, the semiclassical approximation for the prop-
agator in CS that is obtained by a SPA in (19) is

〈X1|Û t|X2〉SC2 =
∑

γ0

2le{ i
~ [S̃

t
γ0

(ξ0)+
1
2X1∧X2]− 1

~
(x0−X)2}

| det(Mγ0 − 1)| 12
.

(20)
The sum now runs over all the classical orbits γ0 whose

chord is ξ0. The chord action S̃t
γ0
(ξ0) = S̃t

γ0
(x0)− ξ0∧x0

is the Legendre transform of S̃t
γ0
(x0) [14]. The expression

(20) is complementary to equation (18), while expressed
in terms of chords instead of centers. Although, as is
the case for the chord action [14], the expression (20) di-
verges for very short times where the monodromy matrix
becomes the identity. Also, for obtaining (20) it was as-
sumed that the Gaussian term in (19) is smooth close to
the stationary point. However, this is not the case in the
semicalssical limit, if ~ → 0 then the width of the Gaus-
sian tends to zero. For this reasons, it is not surprising
that expression (20) fails, as is shown in Figure 2.

III. SEMICLASSICAL COHERENT STATES

PROPAGATOR

The phase space integral in (19) must then be per-
formed avoiding the usual SPA. For this purpose, it must
be noted that classical orbits that starts near X2 and ends
up near X1 will have an important contribution in (19).
These orbits have their center points close to X . Hence,
let us expand the center action up to quadratic terms
near the mid point X , so that,

St
γ(x) = St

γ(X) + ξtγ ∧ x′ + x′Btx
′ +O(x′3), (21)

with x′ = X−x . Where St
γ(X) is the action of the orbit

through the point X for which the chord ξtγ is

ξtγ = −J
∂St

γ(x)

∂x

∣∣∣∣
x=X

,

while, the symmetric matrix Bt is the Cayley represen-
tation of the symplectic matrix Mt

JBt =
1−Mt

1 +Mt
=

1

2

∂2St
γ(x)

∂x2
. (22)

After the quadratic expansion of the action (21) is in-
serted in (19) we get

〈X1|Û t
SC |X2〉 =

(
2

π~

)L ∑

γ

I

|det (Mt + 1)|
1
2

(23)

× exp
i

~

[
S̃t
γ(X)− ξ0 ∧X +

1

2
X1 ∧X2

]
,

with

I =

ˆ

e
1
~{−x†

Cx+i[x†
Btx+(ξtγ−ξ0)∧x]}dx (24)
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a quadratic integral. The matrix C is the quadratic form
that denotes the scalar product,

x′2 = x′.x′ = x′†
Cx′,

where x† stands for the transposed vector. Note that in
an orthonormal basis the matrix C is the identity.

We now perform exactly the quadratic integral, using

I =

ˆ

exp

{
− 1

~
x′†Vtx

′ +
1

~
Y.x′

}
dx′

=
(π~)

L

√
(detVt)

exp

{
1

4~
Y †V−1

t Y

}
. (25)

From equation (23)

Vt = C − iBt (26)

and

Y = iJ
(
ξtγ − ξ0

)
= 2iJ δtγ , (27)

where ξtγ = xf − xi is the chord that joins xf and xi,
respectively the final and initial point of the orbit γ of
center X . This last expression defines the point shift δtγ ,
so that

δtγ =
1

2

(
ξtγ − ξ0

)
= xf −X1 = X2 − xi. (28)

Note that, the point shift δtγ is zero if there is a classical
orbit starting in the point X2 and ending in X1.

Inserting (25) in (23), we get for the propagator in
coherent states,

〈X1|Û t
SC |X2〉 = 2L

∑

γ

exp
[
−1
~
δt†γ Ṽδtγ

]

[detVt |det (Mt + 1)|]
1
2

×

exp
i

~

[
S̃t
γ(X)− 1

2
X1 ∧X2

]
(29)

with the complex matrix Vt and the point shift δtγ defined

respectively in (26) and (28) while Ṽ = J †V−1
t J . In

order to separate amplitude and phase terms in (29), it
is useful to write

Ṽ = J †V−1
t J = J † 1

C − iBt
J = Ct − iBt, (30)

with the real matrices

Ct = ℜ(Ṽ) and Bt = −ℑ(Ṽ).

Also,

detVt =

∣∣∣∣detVt

∣∣∣∣e
iε, (31)

with

∣∣∣∣detVt

∣∣∣∣ denoting the modulus and ε the argument.

Hence inserting (30) and (31) in the matrix elements
of the coherent state propagator (29) we obtain

〈X1|Û t|X2〉SC3 =
∑

γ
2l

|det[Vt(Mt+1)]|
1
2
exp

[
− 1

~
δt†γ Ctδ

t
γ

]

× exp i
~

[
− 1

2X1 ∧X2 + S̃t
γ(X) + δt†γ Btδ

t
γ + ~

ε
2

]
. (32)

The sum in (32) runs over all the classical orbits γ
whose center lies on the point X . The point shift
δtγ = 1/2

(
ξtγ − ξ0

)
is half the difference between the chord

ξtγ , that joins the initial and final points of the orbit γ,
and the chord ξ0 joining the points X1 and X2 (see Figure
1).

The expression (32) of the semiclassical matrix ele-
ments of the quantum propagator between two CS, is the
main contribution of this work. It is entirely expressed in
terms of real classical objects, namely the action St

γ(X)
of the classical real orbit whose mid point is X , the point
shift δtγ , the monodromy matrix Mt and its Cayley rep-
resentation Bt.

Very importantly, let us see that,

Vt

(
Mt + 1

)
= (C − iBt)

(
Mt + 1

)
.

= C
(
Mt + 1

)
+ iJ

(
1−Mt

)
,

hence, the only way for the pre-exponential factor in ex-
pression (32) to vanish ( i.e, det [Vt (Mt + 1)] = 0) is that
the symplectic matrix Mt has simultaneously eigenval-
ues +1 and −1. This is never the case for a one degree of
freedom system, while for systems with two and more de-
grees of freedom it is an accidental coincidence of crossing
of two types of caustics.

It is also important to remark that, the Gaussian term
in (32) dampens the amplitude for large values of the
point shift δtγ , that is for orbits that start far from the
point X2 (or end far from X1). So, the main contribution
in the sum over classical orbits in (32) will come from
the single orbit γ whose initial point lies the closest to
X2. Then, only this particular orbit will be taken into
account.

It must be mentioned that the same expression (32)
could have been obtained by performing in (17) the com-
plete quadratic integral instead of the SPA that led to
(18).

Also, note that, if t = 0, the quantum propagator is
just the identity operator in Hilbert space, the classi-
cal symplectic matrix is the identity, the center action
is null, and so are the symmetric matrix (Bt=0 = 0) and
the chord ξtγ = 2δtγ − X2 + X1 = 0 . Hence we recover
the result (2) for the overlap of coherent states.

In expression (32) the orbit γ whose center is X re-
mains to be determined in order to obtain its action
S̃t
γ(X) and the point shift δtγ . As we only need the con-

tribution for the single orbit γ whose initial point lies the
closest to X2, we linearize the flux in the the neighbor-
hood of the orbit γ2 passing through the point X2 (see
Figure 1). For that purpose, we use the center generating
function, so that

St
γ(x) = St

γ2
+ ξtγ2

∧ x2 + x†
2Btx2 +O(x′3), (33)
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X

X�

Xγ2

ξγ

d

ξγ�

ξ�

γ�

γ

xi

xf

x2f

X1

δγ

Figure 1: The points X2 and X1 have their mid point in X

and ξ0 denotes the chord that joins them. The orbit γ, has
also its center point in X while its chord ξtγ joins the points
xi and xf . The orbit γ, starts in xi that is shifted from X2

by the point shift δtγ . Meanwhile, orbit γ2 starts in X2 and
evolves after a time t up to x2f , the drift from X1 is denoted
by dt. For this last orbit γ2, the chord is denoted by ξtγ2 ,
while the mid point is Xγ2 . For simplicity, in the figure we
have dropped the time superscripts t.

with x2 = x −Xγ2 , where Xγ2 denotes the mid point of
this orbit γ2 starting in X2 and ending up in x2f . The

chord ξtγ2
= −J ∂St

γ(x)

∂x

∣∣∣∣
X2

= x2f−X2 joins its end points,

while St
γ2

stands for the action of the orbit. Note that

Xγ2 = X2 + 1/2ξtγ2
.

The chord ξtγ of the orbit γ centered in X is obtained by
performing the derivative of the center generating func-
tion (33),

ξtγ = −J
∂St

γ(x)

∂x

∣∣∣∣
X

= ξtγ2
− JBt

(
ξ0 − ξtγ2

)
.

So that, recalling (22) , we get for the point shift

δtγ =
1

2

(
ξtγ − ξ0

)
=

1

Mt + 1
dt, (34)

where,

dt = ξtγ2
− ξ0 = x2f −X1 (35)

is the drift of the trajectory γ2 that starting in X2 ends
up in x2f instead of X1 (see Figure 1). In order to include
the Morse index αt

γ2
in the action let us define the action

S̃t
γ2

= St
γ2

+ ~
π
2α

t
γ2

. Hence, for the center action of the
orbit γ whose middle point is X is we get

S̃t
γ(X) = S̃t

γ2
+

1

2
ξtγ2

∧ ξ0 +
1

4
dt†Btd

t. (36)

With expressions (36) and (34), respectively for the point

shifts δtγ and the center action S̃t
γ(X), inserted in (32) we

obtain for the coherent states propagator,

〈X1|Û t|X2〉SC3 =
2l

|det [Vt (Mt + 1)]|
1
2

exp

[
−dt†Etd

t

~

]

× exp
i

~

[
St
2 +

(
ξtγ2

+X
)
∧ ξ0

2
+ dt†

(
Bt

4
+Dt

)
dt
]
.

(37)

Now ε , the argument of det [Vt] has been included in the
action

St
2 = S̃t

γ2
+ ~

ε

2
= St

γ2
+ ~

π

2
αt
γ2

+ ~
ε

2

and the symmetric matrices Dt and Et are defined as

Dt =

(
1

Mt + 1

)†
Bt

(
1

Mt + 1

)
,

Et =

(
1

Mt + 1

)†
Ct

(
1

Mt + 1

)
. (38)

Equation (37) is a general expression only in term of
classical objects, its difference from (32) is that we have
made use of the quadratic expansion of the action around
the orbit γ2 in order to express both the point shift δtγ
and the center generating function S̃t

γ(X) of the orbit γ
only in terms of magnitudes given by the orbit γ2 pass-
ing through X2. This is a crucial advantage, now the
semiclassical approximation of the CS matrix elements
involves uniquely objects obtained directly by the classi-
cal evolution of the flux through X2, namely, the chord
ξtγ2

(or the drift dt defined in (35)), and the action St
2 of

the classical orbit γ2 passing thorough X2, and the mon-
odromy matrix Mt. From this former, equation (22)
gives its Cayley representation Bt, after what, with (26),
we get the complex matrix Vt while the real matrices Ct

and Bt defined in (30) allows to obtain Dt and Et through
(38). Hence, there is no need for any further root search,
neither integration over phase space conditions.

It is very useful to perform a comparison of the here
derived Semiclassical CS propagator with other kinds of
propagators based on Gaussian wave packets, namely
the initial value representations (IVR) of the propagator.
These propagators are generally based on wave packets
of the form

〈q|Xτ 〉 =
(ℜτ

π

) 1
4

exp

[
−τ

2
(q −Q)2+i

P

~
(q−Q)

]
,

which resembles (1) if τ = mω
~

. Although, the differ-
ent phase factor ensures the symplectic invariance of the
coherent states used in (1). In order to maintain the
symplectic form we will then chose as in [23],

〈q|Xτ〉=
(ℜτ

π

) 1
4

exp

[
−τ

2
(q −Q)2+i

P

~

(
q− Q

2

)]
. (39)
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With this choice, the overlap between two Gaussian wave
packets is:

〈Xτ1
1 |Xτ2

2 〉=exp

[
− (X1 −X2)

2

4~
− i

2~
X1 ∧X2

]
, (40)

the norm is defined as X2 = X†ΛX where the symplectic
squeezing matrix is

Λ =

( (
~
√
τ1τ2

)−1
0

0 ~
√
τ1τ2

)
.

The IVR of the propagator, in coordinates representa-
tion takes the form [17]:

Kt(q, q′)= 〈q|Û t|q′〉IVR

=

ˆ

dX0

(2π~)
l
〈q|Xτ1

t 〉Rt(X0)e
i
~
St(X0)〈Xτ2

0 |q′〉, (41)

where 〈Xτ2
0 |q′〉 is a Gaussian wave packet whose center

lies in the point X0 (initial point) in phase space. Mean-
while 〈q|Xτ1

t 〉 is a Gaussian wave packet centered in the
point Xt, that is the classically evolved initial point X0

up to a time t. For the pre-exponential factor,

Rt(X0)=

[
A

(
τ1m11+τ2m22−i~τ1τ2m21−

1

i~
m12

)] 1
2

, (42)

where A = 1
2
√
ℜτ1ℜτ2

and the monodromy matrix ele-

ments
(

δQt

δPt

)
= M

(
δQ0

δP0

)
=

(
m11 m12

m21 m22

)(
δQ0

δP0

)

connects the initial and final deviations of the trajectories
Xt. While

St(X0) =

ˆ t

0

[pt′ q̇t′ −H ] dt′

is the classical action of the orbit that starts in X0. The
methods based on (41) are called initial value represen-
tation (IVR) and have shown to be very useful for many
physical systems. They present the advantage over Van
Vlek Gutwiller (VVG) [12, 13] propagator that there is
no need for any search of trajectories satisfying special
boundary conditions.

Herman and Kluk (HK) formula is an IVR of the prop-
agator that is also known as Frozen Gaussian Approxi-
mation (FGA) since in that case, the initial and final
Gaussian have the same parameters τ1 = τ2 = τ , a real
positive constant. With this choice for the Gaussian pa-
rameters, the pre-factor (42) for the HK propagator is

RHK
t (X0)=

∣∣∣∣
1

2

(
m11+m22 − i~τm21 −

1

i~τ
m12

)∣∣∣∣
1
2, (43)

that never vanishes. Hence the HK propagator is free of
caustics singularities.

An also well known case of IVR is Heller’s Thawed
Gaussian Approximation (TGA), where now the initial
and final Gaussian parameters differ. While τ2 = τ with
again τ real positive,

τ1 = − i

~

m12 + i~τm11

m22 + i~τm21

is complex. The prefactor (42) for this choice of param-
eters has now the form

RTGA
t (X0)=

(
τ

ℜτ1

) 1
4

(m22 + i~τm21)
− 1

2 . (44)

The IVR propagator can also be expressed in a mixed
representation,

Kt(q,X2)= 〈q|Û t|X2〉IVR=

ˆ

dq′Kt(q, q′)〈q′|X2〉

=

ˆ

dX0

(2π~)l
〈q|Xτ1

t 〉Rt(X0)e
i
~
St(X0)〈Xτ2

0 |X2〉. (45)

Note that we omit the τ superscript for the special case
where τ = mω

~
. The overlap between the wave func-

tions can be performed analytically using (39) and (40),
whereas the integration over initial phase space is still
left over in the IVR propagator, but it is cut off by a
bell shaped weight function (overlap between two Gaus-
sians). One can perform this integration using Monte
Carlo methods [21] leading to a powerful numerical semi-
classical procedure.

The HK propagator is a uniform semiclassical approx-
imation of the exact propagator as has been shown by
Kay [7]. Indeed it is, the lowest order term of an expan-
sion of the propagator in ~. Also, the HK propagator
maintains unitarity for longer times than other IVR such
as Heller’s TGA [18].

Although, as was stated by Grossmann and Herman in
[19], a true HK-like expression must consist of an integra-
tion over initial phase space, which may not be treated
in any additional approximation. However, it has been
shown by Grossmann in [20] that by a quadratic expan-
sion of the exponent around the phase space center of the
initial wavepacket, the TGA, originally derived by Heller
in the mixed representation, can be obtained from the
HK propagator, equation (45) with (43) and τ1 = τ2 = τ .

Also, Baranger et al [9] have shown that the TGA
in the mixed representation is equivalent to their mixed
propagator obtained with complex trajectories, except
for two (related) differences. The presence of an extra
phase that is associated with the use of the Gaussian av-
eraged Hamiltonian H in the computation of the action,
rather than the Weyl symbol H(x) (essentially the clas-
sical HamiltonianHC). In this respect, also Grossmann
and Xavier [22] have derived the HK propagator from
the CS propagator proposed by Baranger el al. restrict-
ing themselves to real variables.
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For the IVR of the propagator in the CS representa-
tion,

Kt(X1 , X2)=〈X1|Û t|X2〉IVR=
ˆ

dq〈X1|q〉Kt(q,X2)

=

ˆ

dX0

(2π~)
l
〈X1|Xτ1

t 〉Rt(X0)e
i
~
St(X0)〈Xτ2

0 |X2〉 (46)

the overlap between the Gaussians can be performed an-
alytically, whereas, the phase space integration must be
done numerically without any further approximation [19].

In this CS representation, Deshpande and Ezra [23]
found that expanding the exponent of the integrand in
(46) up to quadratic terms and integrating , the linearized
matrix element for the HK propagator conditions, they
obtained an expression that is identical with Littlejohn
form of the TGA matrix element [24]. Also, this expres-
sion resembles to the one obtained by Baranger et al [9]
except for the two differences previously described, that
are related with the use of the Gaussian averaged Hamil-
tonian H , rather than the Weyl symbol H(x).

A similar situation has been discussed by dos Santos
and Aguiar [10], in order to obtain a CS path integral in
the Weyl representation, who precisely argued the same
difference with the representation used by Barranger et
al. in [9]. Indeed the expression obtained from the lin-
earized HK propagator by Deshpande and Ezra in [23]
coincides with the expression given by dos Santos and
Aguiar in [10]. However, Deshpande and Ezra [23] used
real variables in their derivation not complex ones. This
means that the linearized version of the HK propagator
obtained in [23] gives the expression (18) with real tra-
jectories that is shown in section IV not to give accurate
results. Hence, as was stated by Grossmann and Her-
man in [19], a true HK-like expression must consist of an
integration over initial phase space, which may not be
treated in any additional approximation.

On the other side, the expression (32) derived in this
work is a semiclassical approximation that has been ob-
tained directly from the semiclassical Weyl propagator.
This last one, is the lowest order term of an expansion in
~, obtained through SPA but of the path integral expres-
sion of the propagator expressed in the Weyl representa-
tion, that is symplectically invariant. Only afterwards,
the propagator is changed to the CS representation. For
this last procedure, we avoid SPA, instead, we performed
a quadratic expansion of the center action in the neigh-
borhood of the relevant trajectories.

Then, the obtained expression (32) has the advantages
of being a symplectically invariant expression only deal-
ing with real trajectories. Also, differently from VVG
propagators, it is free of caustic singularities. Although,
it does not need any phase space integration, as is the
case for IVR methods, the expression (32) has the draw-
back for the need of searching trajectories whose center
lies in X . However, the quadratic expansion of the center
action and its use as a generating function allowed us to
obtain expression (37) that only involves objects relative
to the orbit γ2 passing though the initial point X2.

IV. MATRIX ELEMENTS FOR MAPS AND

APPLICATION TO THE CAT MAP

In what follows, we will obtain explicit expression for
the classical objects involved in (37). In analogy with
classical Poincaré surfaces of section. We will first per-
form the study on a surface of section that is transversal
to the flux and passing through X . The flux restricted
to this section is now a map on the section, for this map
the time is discrete.

The study of autonomous fluxes through a map on sur-
face of section is a standard procedure, in the case of
billiards this is done through the well known Birkhoff
coordinates. Also, quantum surface of section methods
are shown to be exact [25] for general Hamiltonian sys-
tems. From now on, the 2l dimensional autonomous flux
is studied through the 2l− 2 map on the mentioned sur-
face of section.

As we have already mentioned, we need to evaluate the
classical objects involved in (37). For that purpose, it will
be convenient to express them in the basis of eigenvectors
of the symplectic matrix. For the case of a map with
one degree of freedom (corresponding to a two degrees
of freedom flux), this is the stable and unstable vector

basis
(
~ζu, ~ζs

)
where the eigenvalues of the symplectic

matrix Mt are exp(−λt) and exp(λt), (λ is the stability
or Lyapunov exponent of the orbit).

Let us then define xs and xu as canonical coordinates
along the stable and unstable directions respectively such

that x = (xu, xs) = xu
~ζu + xs

~ζs with ~ζu ∧ ~ζs = 1. As the

basis formed by
(
~ζu, ~ζs

)
is non orthonormal, the scalar

product of two vectors takes the form,

x.y = x†
Cy

=
[
ζ2uxuyu + ζ2sxsys + ~ζu.~ζs (xuys + xsyu)

]
.

That is, the scalar product matrix is,

C =

[
ζ2u

~ζu.~ζs
~ζu.~ζs ζ2s

]
(47)

with ζ2u = ~ζu. ~ζu and ζ2s = ~ζs.~ζs. Since the transformation

from the orthonormal basis
(
~i,~j

)
to the basis

(
~ζu, ~ζs

)
is

symplectic

detC = ζ2uζ
2
s −

(
~ζu.~ζs

)2

= 1.

Also, in the
(
~ζu, ~ζs

)
basis,

Mt + 1 = 2 cosh

(
λt

2

)[
etλ/2 0
0 e−tλ/2

]
, (48)

hence

∣∣det
(
Mt + 1

)∣∣ = 4 cosh2
(
λt

2

)
, (49)
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is easily obtained only in terms of λ and t. Analogously,

Mt − 1 = 2 sinh

(
λt

2

)[
et

λ/2 0
0 −e−tλ/2

]
,

while, Bt, the Cayley parametrization of Mt, is in this
basis

Bt =

[
0 tanh (tλ/2)

tanh (tλ/2) 0

]
. (50)

Hence, using the expression of the symmetric matrix Bt

(50) and the scalar product (47) we get the complex ma-
trix

Vt=C−iBt=

[
ζ2u

~ζu.~ζs−i tanh
(
tλ
2

)

~ζu.~ζs−i tanh
(
tλ
2

)
ζ2s

]
. (51)

Also, the complex determinant

detVt =
[
1 + tanh2 (tλ/2) + 2i ~ζu.~ζs tanh (tλ/2)

]
, (52)

with modulus

|detVt|=

√[
1 + tanh2

(
tλ

2

)]2
+

[
2 ~ζu.~ζs tanh

(
tλ

2

)]2
(53)

and argument

ǫ = arctan
2 ~ζu.~ζs tanh (tλ/2)

1 + tanh2 (tλ/2)
, (54)

can be explicitly written in terms of the time and the
Lyapunov exponent. Now, inverting the matrix Vt (51)
we get,

V−1
t =

−1

detVt

[
−ζ2s

~ζu.~ζs−i tanh
(
tλ
2

)

~ζu.~ζs−i tanh
(
tλ
2

)
−ζ2u

]

=
1

detVt

(
C

−1 + iBt

)
.

We must note that since the matrix Vt is symmetric, we

get for the matrix Ṽ defined in (30) that,

Ṽ =
Vt

detVt
=

(C − iBt)

|detVt|2
(ℜ(detVt)− iℑ(detVt))

= Ct − iBt. (55)

Hence, in the stable and unstable vector basis
(
~ζu, ~ζs

)
,

the real matrices Ct and Bt take the form

Ct =
1

|detVt|2
{
C th2 − 2Bt

~ζu.~ζs tanh

(
tλ

2

)}
(56)

and

Bt =
1

|detVt|2
{
Btth2 + 2C ~ζu.~ζs tanh

(
tλ

2

)}
, (57)

where th2 = 1 + tanh2
(
tλ
2

)
. The symmetric matrix Bt,

the scalar product matrix C and the determinant detVt

are respectively given by the expressions (50), (47) and
(53). Inserting the expressions (48), (56) and (57) in the
definition of the symmetric matrices Dt and Et (38), we
get

Dt=
−2 tanh tλ

2

det1


−ζ

2
s

(
~ζu.~ζs

)
e−tλ th2+2

(
~ζu.~ζs

)
2

th2+2
(
~ζu.~ζs

)
2 −ζ2u

(
~ζu.~ζs

)
etλ


 (58)

and

Et = − th2

det1


 −ζ2s e

−tλ/2 ~ζu. ~ζs
2 sinh2(tλ/2)+1

~ζu. ~ζs
2 sinh2(tλ/2)+1

−ζ2ue
tλ/2


 (59)

where we have defined

det1 = 4 cosh2
(
tλ

2

)
|detVt|2 .

It is important to note that, (58), (59), (50), (52) and
(49) are respectively explicit expression of the symmetric
matrices Dt, Et and Bt and the determinants |detVt|and
|det (Mt + 1)| for any value of the time t. Inserting these
expressions in (37), we obtain a semiclassical expression
for the matrix elements of the propagator in the CS basis
entirely in terms of classical features such as, the chord
ξ0 that joins the points X2 and X1, the action of the

orbit S̃X2 , the stable and unstable vectors ~ζu, ~ζs and the
Lyapunov exponent λ.

Now the present theory is applied to the cat map i.e.
the linear automorphism on the 2-torus generated by the
2 × 2 symplectic matrix M, that takes a point x− to a
point x+ : x+ = Mx− mod(1). In other words, there
exists an integer 2-dimensional vector m such that x+ =
Mx− − m. Equivalently, the map can also be studied
in terms of the center generating function [26]. This is
defined in terms of center points

x ≡ x+ + x−
2

(60)

and chords

ξ ≡ x+ − x− = −J ∂S(x,m)

∂x
, (61)

where

S(x,m) = xBx+ x (B − J )m+
1

4
m(B + J̃ )m (62)

is the center generating function. Here B is a symmetric
matrix (the Cayley parameterization of M, as in (50)),
while

J̃ =

[
0 1

1 0

]
. (63)
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We will study here the cat map with the symplectic ma-
trix

M=

[
2 3

1 2

]
, and symmetric matrix B=

[
− 1

3 0

0 1

]
. (64)

This map is known to be chaotic, (ergodic and mix-
ing) as all its periodic orbits are hyperbolic. The map
corresponds to viewing stroboscopically the motion gen-
erated by a quadratic Hamiltonian [27]. However, the
torus boundary conditions makes the dynamics as non-
linear as a dynamics can get [27]. The eigenvalues of M
are e−λ and eλ with λ = ln(2 +

√
3) ≈ 1.317. This is

then the stability exponent for the fixed points, whereas
the exponents must be doubled for orbits of period 2.

All the eigenvectors have directions ~ζs = (−
√
3
2 , 1

2 ) and
~ζu = (1, 1√

3
) corresponding to the stable and unstable

directions respectively.
Quantum mechanics on the torus, implies a finite

Hilbert space of dimension N = 1
2π~ , and that positions

and momenta are defined to have discrete values in a lat-
tice of separation 1

N [28, 29]. The cat map was originally
quantized by Hannay and Berry [28] in the coordinate
representation the propagator is:

〈qk|ÛM|qj〉 =
(

i

N

) 1
2

exp

[
i2π

N
(k2 − jk + j2)

]
, (65)

where the states 〈q|qj〉 are periodic combs of Dirac delta
distributions at positions q = j/Nmod(1), with j integer
in [0, N−1]. In the Weyl representation [29], the quantum
map has been obtained in [26] as

UM(x) =
2

|det(M + 1)|
1
2

∑

m

ei2πN [S(x,m)] (66)

where the center points are represented by x = ( a
N , b

N )
with a and b integer numbers in [0, N − 1] for odd values
of N [29]. There exists an alternative definition of the
torus Wigner function which also holds for even N .

The fact that the symplectic matrix M has equal di-
agonal elements implies in the time reversal symmetry
and then the symmetric matrix B has no off-diagonal el-
ements. This property will be valid for all the powers of
the map and, using (66), we can see that it implies in the
quantum symmetry

Ul
M(p, q) =

(
Ul

M(−p, q)
)∗

=
(
Ul

M(p,−q)
)∗

. (67)

for any integer value of l.
It has been shown [28] that the unitary propagator is

periodic (nilpotent) in the sense that, for any value of N
there is an integer k(N) such that

Û
k(N)
M = eiφ.

Hence the eigenvalues of the map lie on the k(N) possible
sites

{
exp

[
i(2mπ + φ)

k(N)

]}
, 1 ≤ m ≤ k(N). (68)

For the cases where k(N)〈N there are degeneracies and
the spectrum does not behave as expected for chaotic
quantum systems. In spite of the peculiarities in this
map, a very weak nonlinear perturbations of cat maps
restores the universal behavior of non degenerate chaotic
quantum systems spectra [30]. Eckhardt [31] has argued
that typically the eigenfunctions of cat maps are random.

The coherent states propagator on the torus depends
on the definition of the periodic coherent state [32], with
〈p〉 = P and 〈q〉 = Q. In accordance to (1)

〈X|qk〉 =
∞∑

j=−∞
e−

1
~ [iP (j+Q

2 −k/N)+ 1
2 (j+Q−k/N)2]. (69)

In order to construct operators or functions on the
torus we have to periodize the construction. This is done
merely using the recipe [29] that for any operator its Weyl
representation on the torus A(x) is obtained from is ana-
logue in the plane A(x) by

A(x) =

∞∑

j=−∞

∞∑

k=−∞
(−1)2ja+2kb+jkNA(x+

(k, j)

2
).

Indeed the construction on the torus from the plane is ob-
tain in terms of averages over equivalent points, that are

obtained by translation with integer chords: T̂−→
k

where
−→
k = (kp, kq) is a two dimensional vector with integer
components kp and kq. Hence, the unit operator in the
Hilbert space of the torus is [29]

1̂N =
N−1∑

k=0

|qk〉〈qk| =
〈
T̂−→

k
ei2π(χ∧

−→
k +N

4

−→
k J̃ −→

k )

〉

so that

|X〉 = 1̂N |X〉 =
〈
ei2π(

N
4

−→
k J̃ −→

k )T̂−→
k
|X〉

〉

=

〈
eiπ

N
2

−→
k J̃−→

k e−
i
2~X∧−→

k |X +
−→
k 〉

〉
.

In this way the coherent states matrix elements for any
operator on the torus are obtained through

〈X1|Â|X2〉=
〈
eiπ

N
2

−→
k J̃−→

k e−
i
2~X∧−→

k 〈X1|Â|X2+
−→
k 〉
〉
. (70)

Figure 2 shows the relative error E on the amplitude

of the semiclassical approximations 〈X1|Û t|X2〉SC1 and

〈X1|Û t|X2〉SC2 obtained respectively in (18) and (20)
(after taking in both cases the torus periodization (70))
with respect to the exact expression obtained with the
quantum propagator (65) on the CS (69). As can be seen,
neither (18) nor (20) are good approximations of the ex-
act CS matrix elements, giving errors in the amplitude
of more than 10% or that highly grow with N respec-

tively. Meanwhile, we have verified that 〈X1|Û t|X2〉SC3,
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obtained with (37), is exact in this case, for both the
amplitude and the phase, as expected in a linear system.

100 200 300 400 500
N

0

0.2

0.4

0.6

0.8

1

E

Figure 2: Relative error of the amplitude of the Semiclassical

expressions 〈X1|Û
t|X2〉SC1 and 〈X1|Û

t|X2〉SC2 as a function

of N . In full line the error of 〈X1|Û
t|X2〉SC1 and in dotted

line the error of 〈X1|Û
t|X2〉SC2.

V. CONCLUSIONS

To conclude, the expression (32) obtained in this work
is an accurate semiclassical expression for the CS prop-
agator that avoids complex trajectories, it only involves
real ones. For its obtainment we have used the symplecti-
cally invariant Weyl representation. While the, semiclas-
sical Weyl propagator was derived by performing a SPA
for the path integral in the Weyl representation, for the
transformation to CS representation SPA was avoided.

Also, the quadratic expansion of the center generating
function has allowed to obtain a semiclassical expression
of the CS propagator (37) involving only objects relative
to the orbit γ2 passing though the initial point X2, with-
out the need of any further search of trajectories that are
typical procedures of Gutzwiller Van Vleck based propa-
gators [12, 13], nor phase space integration typical from
IVR methods.

For the case of chaotic maps, the explicit time depen-
dence of the CS propagator has been derived only in
terms of the action of the orbit through the initial point
X2, the Lyapunov exponent and the stable and unstable
vector basis directions.

The comparison with a system whose semiclassical
limit is exact has allowed to correctly check the exactness
of expression (37) up to quadratic Hamiltonian systems.

It is important to mention that the present theory
has already been successfully applied for the semiclas-
sical matrix elements for chaotic propagators in the scar
function basis [33]. This is a crucial element in the semi-
classical theory of short periodic orbits for the evaluation
of the energy spectrum of classically chaotic Hamiltonian
systems [34]-[36].

Of course, the here derived expression can be applied
to a vast variety of systems, in particular for continuous
Hamiltonian systems as was done with complex trajec-
tories in [37], indeed, the fact that only real trajectories
are involved guaranties a simpler procedure.

I thanks G. Carlo, E. Vergini and M. Saraceno for stim-
ulating discussions and the CONICET for financial sup-
port.

Appendix: Reflection Operators in Phase Space

Among the several representations of quantum me-
chanics, the Weyl-Wigner representation is the one that
performs a decomposition of the operators that acts on
the Hilbert space, on the basis formed by the set of uni-
tary reflection operators. In this appendix we review the
definition and some properties of this reflection opera-
tors.

First of all we construct the family of unitary operators

T̂q = exp(−i~−1q.p̂), T̂p = exp(i~−1p.q̂), (71)

and following [14], we define the operator corresponding
to a general translation in phase space by ξ = (p, q) as

T̂ξ ≡ exp

(
i

~
ξ ∧ x̂

)
≡ exp

[
i

~
(p.q̂ − q.p̂)

]
(72)

= T̂pT̂q exp

[
− i

2~
p.q

]
= T̂qT̂p exp

[
i

2~
p.q

]
,(73)

where naturally x̂ = (p̂, q̂). In other words, the order of

T̂p and T̂q affects only the overall phase of the product,

allowing us to define the translation as above. T̂ξ is also
known as a Heisenberg operator. Acting on the Hilbert
space we have:

T̂ξ|qa〉 = e
i
~
p(qa+

q
2 )|qa + q〉 (74)

and

T̂ξ|pa〉 = e−
i
~
q(pa+

p
2 )|pa + p〉. (75)

We, hence, verify their interpretation as translation oper-
ators in phase space. The group property is maintained
within a phase factor:

T̂ξ2 T̂ξ1 = T̂ξ1+ξ2e
[−i
2~ ξ1∧ξ2] = T̂ξ1+ξ2e

[−i
~

D3(ξ1,ξ2)], (76)

where D3 is the symplectic area of the triangle deter-
mined by two of its sides. Evidently, the inverse of the

unitary operator T̂−1
ξ = T̂ †

ξ = T̂−ξ .
The set of operators corresponding to phase space re-

flections R̂x about points x = (p, q) in phase space, is
formally defined in [14] as the Fourier transform of the
translation (or Heisenberg) operators

R̂x ≡ (4π~)−L

ˆ

dξ e
i
~
x∧ξT̂ξ. (77)
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Their action on the coordinate and momentum bases are

R̂x |qa〉 = e2i(q−qa)p/~ |2q − qa〉 (78)

R̂x |pa〉 = e2i(p−pa)q/~ |2p− pa〉 , (79)

displaying the interpretation of these operators as reflec-
tions in phase space. Also, Using the coordinate rep-
resentation of the coherent state (1) and the action of
reflection on the coordinate basis (78), we can see that

the action of the reflection operator R̂x on a coherent
state |X〉 is the x reflected coherent state

R̂x |X〉 = exp

(
i

~
X ∧ x

)
|2x−X〉 . (80)

This family of operators have the property that they
are a decomposition of the unity (completeness relation)

1̂ =
1

2π~

ˆ

dx R̂x, (81)

and also they are orthogonal in the sense that

Tr
[
R̂x1 R̂x2

]
= 2π~ δ(x2 − x1). (82)

Hence, an operator Â can be decomposed in terms of
reflection operators as follows

Â =
1

2π~

ˆ

dx AW (x) R̂x. (83)

With this decomposition, the operator Â is mapped on
a function AW (x) living in phase space, the so called
Weyl-Wigner symbol of the operator. Using (82) it is
easy to show that AW (x) can be obtained by performing
the following trace operation

AW (x) = Tr
[
R̂x Â

]
.

Of course, as it is shown in [14], the Weyl symbol also
takes the usual expression in terms of matrix elements of
Â in coordinate representation

AW (x) =

ˆ

〈
q − Q

2

∣∣∣∣ Â
∣∣∣∣q +

Q

2

〉
exp

(
− i

~
pQ

)
dQ.

It was also shown in [14] that reflection and translation
operators have the following composition properties

R̂xT̂ξ = R̂x−ξ/2e
− i

~
x∧ξ , (84)

T̂ξR̂x = R̂x+ξ/2e
− i

~
x∧ξ , (85)

R̂x1R̂x2 = T̂2(x2−x1)e
i
~
2x1∧x2 (86)

so that

R̂xR̂x = 1̂ . (87)

Now using (86) and (85) we can compose three reflections
so that

R̂x2R̂xR̂x1 = e
i
~
∆3(x2,x1,x)R̂x2−x+x1 (88)

where ∆3(x2, x1, x) = 2(x2 − x) ∧ (x1 − x) is the area
of the oriented triangle whose sides are centered on the
points x2, x1 and x respectively.
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