360 research outputs found

    Estudio de la calidad del árido reciclado y su relación con la resistencia a compresión del hormigón reciclado utilizando una base de datos

    Get PDF
    This work studies the physical and mechanical properties of recycled concrete aggregate (recycled aggregate from concrete waste) and their influence in structural recycled concrete compressive strength. For said purpose, a database has been developed with the experimental results of 152 works selected from over 250 international references. The processed database results indicate that the most sensitive properties of recycled aggregate quality are density and absorption. Moreover, the study analyses how the recycled aggregate (both percentage and quality) and the mixing procedure (pre-soaking or adding extra water) influence the recycled concrete strength of different categories (high or low water to cement ratios). When recycled aggregate absorption is low (under 5%), pre-soaking or adding extra water to avoid loss in workability will negatively affect concrete strength (due to the bleeding effect), whereas with high water absorption this does not occur and both of the aforementioned correcting methods can be accurately employed.El estudio analiza las propiedades físico-mecánicas de los áridos reciclados de hormigón (procedentes de residuos de hormigón) y su influencia en la resistencia a compresión del hormigón reciclado estructural. Para ello se ha desarrollado una base de datos con resultados de 152 trabajos seleccionados a partir de más de 250 referencias internacionales. Los resultados del tratamiento de la base indican que densidad y absorción son las propiedades más sensibles a la calidad del árido reciclado. Además, este estudio analiza cómo el árido reciclado (porcentaje y calidad) y el procedimiento de mezcla (presaturación o adición de agua extra) influyen en la resistencia del hormigón reciclado de diferentes categorías (alta o baja relación agua-cemento). Cuando la absorción es baja (inferior al 5%) presaturar o añadir agua para evitar pérdidas de trabajabilidad afectan negativamente a la resistencia (debido al bleeding), mientras que cuando es alta esto no sucede y ambos métodos son adecuados

    Integration of temporal environmental variation by the marine plankton community

    Get PDF
    Theory and observations suggest that low frequency variation in marine plankton populations, or red noise, may arise through cumulative integration of white noise atmospheric forcing by the ocean and its amplification within food webs. Here, we revisit evidence for the integration of stochastic atmospheric variations by comparing the power spectra of time series of atmospheric and oceanographic conditions to the population dynamics of 150 plankton taxa at Station L4 in the Western English Channel. The power spectra of oceanographic conditions (sea surface temperature, surface nitrate) are redder than those of atmospheric forcing (surface wind stress, net heat fluxes) at Station L4. However, plankton populations have power spectral slopes across trophic levels and body sizes that are redder than atmospheric forcing but whiter than oceanographic conditions. While zooplankton have redder spectral slopes than phytoplankton, there is no significant relationship between power spectral slope and body size or generation length. Using a predator−prey model, we show that the whitening of plankton time series relative to oceanographic conditions arises from noisy plankton bloom dynamics in this strongly seasonal system. The model indicates that, for typical predator−prey interactions, where the predator is on average 10 times longer than the prey, grazing leads to a modest reddening of phytoplankton variability by their larger and longer lived zooplankton consumers. Our findings suggest that, beyond extrinsic forcing by the environment, predator–prey interactions play a role in influencing the power spectra of time series of plankton populations

    Dimension and support of underground slate mines

    Get PDF
    [Abstract] We've studied the conditions about dimensions and support ofan underground mine of roofing slate in Galice, worked by rooms with continuous pillars. The rock mass was characterized by the empiric and analitic methods, calculating the stable pillar wide along the mine by the theory of attributed area and by a model of finite elements, where the breaking criterion ofHoek and Brown was applied. The result was a parabolic relationship between pillar wide and mine length. Stability studies in an isolated stope give an elastic performance on the periphery of the room, without tractions. Although the stability ofthe mine is good, a systematic support is recommended on the basis of bolts, that will be reinforced with projected concret at the top, and a singular treatment of the detected wedges

    Planar refraction and lensing of highly confined polaritons in anisotropic media

    Get PDF
    Refraction between isotropic media is characterized by light bending towards the normal to the boundary when passing from a low- to a high-refractive-index medium. However, refraction between anisotropic media is a more exotic phenomenon which remains barely investigated, particularly at the nanoscale. Here, we visualize and comprehensively study the general case of refraction of electromagnetic waves between two strongly anisotropic (hyperbolic) media, and we do it with the use of nanoscale-confined polaritons in a natural medium: alpha-MoO3. The refracted polaritons exhibit non-intuitive directions of propagation as they traverse planar nanoprisms, enabling to unveil an exotic optical effect: bending-free refraction. Furthermore, we develop an in-plane refractive hyperlens, yielding foci as small as lambdap/6, being lambdap the polariton wavelength (lambda0/50 compared to the wavelength of free-space light). Our results set the grounds for planar nano-optics in strongly anisotropic media, with potential for effective control of the flow of energy at the nanoscale.G.Á.-P. and J.T.-G. acknowledge support through the Severo Ochoa Program from the Government of the Principality of Asturias (nos. PA-20-PF-BP19-053 and PA-18-PF-BP17-126, respectively). S.X. acknowledges the support from Independent Research Fund Denmark (Project No. 9041-00333B). B.C. acknowledges the support from VILLUM FONDEN (No. 00027987). The Center for Nanostructured Graphene is sponsored by the Danish National Research Foundation (Project No. DNRF103.) K.V.V. and V.S.V. gratefully acknowledge the financial support from the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-606). J.M.-S. acknowledges financial support through the Ramón y Cajal Program from the Government of Spain (RYC2018-026196-I). A.Y.N. and J.I.M. acknowledge the Spanish Ministry of Science, Innovation and Universities (national projects MAT201788358-C3-3-R and PID2019-104604RB/AEI/10.13039/501100011033). R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (national project RTI2018-094830-B-100 and the project MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program) and the Basque Government (grant No. IT1164-19). A.Y.N. also acknowledges the Basque Department of Education (grant no. PIBA-2020-1-0014). P.A.-G. acknowledges support from the European Research Council under starting grant no. 715496, 2DNANOPTICA and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-111156GB-I00)

    Active and Passive Tuning of Ultranarrow Resonances in Polaritonic Nanoantennas

    Get PDF
    [EN] Optical nanoantennas are of great importance for photonic devices and spectroscopy due to their capability of squeezing light at the nanoscale and enhancing light-matter interactions. Among them, nanoantennas made of polar crystals supporting phonon polaritons (phononic nanoantennas) exhibit the highest quality factors. This is due to the low optical losses inherent in these materials, which, however, hinder the spectral tuning of the nanoantennas due to their dielectric nature. Here, active and passive tuning of ultranarrow resonances in phononic nanoantennas is realized over a wide spectral range (approximate to 35 cm(-1), being the resonance linewidth approximate to 9 cm(-1)), monitored by near-field nanoscopy. To do that, the local environment of a single nanoantenna made of hexagonal boron nitride is modified by placing it on different polar substrates, such as quartz and 4H-silicon carbide, or covering it with layers of a high-refractive-index van der Waals crystal (WSe2). Importantly, active tuning of the nanoantenna polaritonic resonances is demonstrated by placing it on top of a gated graphene monolayer in which the Fermi energy is varied. This work presents the realization of tunable polaritonic nanoantennas with ultranarrow resonances, which can find applications in active nanooptics and (bio)sensing.J.M.-S. acknowledges financial support from the Ramon y Cajal Program of the Government of Spain and FSE (Grant No. RYC2018-026196-I) and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation Grant Number PID2019-110308GA-I00). P.A.-G. acknowledges support from the European Research Council under starting Grant No. 715496, 2DNANOPTICA, and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation Grant Number PID2019-111156GB-I00). G.a.-P. and J.T.-G. acknowledge support through the Severo Ochoa Program from the Government of the Principality of Asturias (Grant nos. PA20-PF-BP19-053 and PA-18-PF-BP17-126, respectively). A.Y.N. acknowledges the Spanish Ministry of Science and Innovation (Grant Nos. MAT201788358-C3-3-R and PID2020-115221GB-C42) and the Basque Department of Education (Grant No. PIBA-2020-1-0014) J.H.E. acknowledges support for h-BN crystal growth from the National Science Foundation, Award Number CMMI-1538127. R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (National Project Grant No. RTI2018-094830-B-100 and the Project Grant No. MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program), the Basque Government (Grant No. IT1164-19), and the European Union's Horizon 2020 research and innovation programme under the Graphene Flagship (Grant Agreement Numbers 785219 and 881603, GrapheneCore2 and GrapheneCore3). I.D. acknowledges the Basque Government (Grant No. PRE_2019_2_0164). Work at MIT was partly supported through AFOSR Grant No. FA9550-16-1-0382, through the NSF QII-TAQS program (Grant No. 1936263), and the Gordon and Betty Moore Foundation EPiQS Initiative through Grant No. GBMF9643 to P.J.-H

    Infrared permittivity of the biaxial van der Waals semiconductor α\alpha-MoO3_3 from near- and far-field correlative studies

    Get PDF
    The biaxial van der Waals semiconductor α\alpha-phase molybdenum trioxide (α\alpha-MoO3_3) has recently received significant attention due to its ability to support highly anisotropic phonon polaritons (PhPs) -infrared (IR) light coupled to lattice vibrations in polar materials-, offering an unprecedented platform for controlling the flow of energy at the nanoscale. However, to fully exploit the extraordinary IR response of this material, an accurate dielectric function is required. Here, we report the accurate IR dielectric function of α\alpha-MoO3_3 by modelling far-field, polarized IR reflectance spectra acquired on a single thick flake of this material. Unique to our work, the far-field model is refined by contrasting the experimental dispersion and damping of PhPs, revealed by polariton interferometry using scattering-type scanning near-field optical microscopy (s-SNOM) on thin flakes of α\alpha-MoO3_3, with analytical and transfer-matrix calculations, as well as full-wave simulations. Through these correlative efforts, exceptional quantitative agreement is attained to both far- and near-field properties for multiple flakes, thus providing strong verification of the accuracy of our model, while offering a novel approach to extracting dielectric functions of nanomaterials, usually too small or inhomogeneous for establishing accurate models only from standard far-field methods. In addition, by employing density functional theory (DFT), we provide insights into the various vibrational states dictating our dielectric function model and the intriguing optical properties of α\alpha-MoO3_3

    Very high energy particle acceleration powered by the jets of the microquasar SS 433

    Full text link
    SS 433 is a binary system containing a supergiant star that is overflowing its Roche lobe with matter accreting onto a compact object (either a black hole or neutron star). Two jets of ionized matter with a bulk velocity of 0.26c\sim0.26c extend from the binary, perpendicular to the line of sight, and terminate inside W50, a supernova remnant that is being distorted by the jets. SS 433 differs from other microquasars in that the accretion is believed to be super-Eddington, and the luminosity of the system is 1040\sim10^{40} erg s1^{-1}. The lobes of W50 in which the jets terminate, about 40 pc from the central source, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed. At higher energies (>100 GeV), the particle fluxes of γ\gamma rays from X-ray hotspots around SS 433 have been reported as flux upper limits. In this energy regime, it has been unclear whether the emission is dominated by electrons that are interacting with photons from the cosmic microwave background through inverse-Compton scattering or by protons interacting with the ambient gas. Here we report TeV γ\gamma-ray observations of the SS 433/W50 system where the lobes are spatially resolved. The TeV emission is localized to structures in the lobes, far from the center of the system where the jets are formed. We have measured photon energies of at least 25 TeV, and these are certainly not Doppler boosted, because of the viewing geometry. We conclude that the emission from radio to TeV energies is consistent with a single population of electrons with energies extending to at least hundreds of TeV in a magnetic field of 16\sim16~micro-Gauss.Comment: Preprint version of Nature paper. Contacts: S. BenZvi, B. Dingus, K. Fang, C.D. Rho , H. Zhang, H. Zho

    Unha proposta innovadora para educación infantil dende o proxecto KidsInnScience: as patacas poden medrar no aire

    Get PDF
    A proposta innovadora “As patacas poden medrar no aire” está destinada para o alumnado de educación infantil e enmárcase no proxecto europeo KidsInnScience: turning kids on to science. Neste proxecto participan dez países, dous latinoamericanos e no que participa a Universidade de Santiago de Compostela xunto con outros sete países europeos e dous latinoamericanosEste traballo forma parte do proxecto europeo “KidsINNscience (KIS): turning kids on to science” financiado polo séptimo programa marco, código SIS-CT-2010-244265S
    corecore