5,354 research outputs found

    Presence of the transmembrane protein neuropilin in cytokine-induced killer cells

    Get PDF
    Background/Aim: Cytokine-induced killer (CIK) cells are a heterogenous population of immune cells showing promising applications in immunotherapeutic cancer treatment. Neuropilin (NRP) proteins have been proven to play an important role in cancer development and prognosis. In this study, CIK cells were tested for expression of NRPs, transmembrane proteins playing a role in the proliferation and survival of cancer cells. Materials and Methods: CIK cells were analyzed at different time points via flow cytometry and quantitative real-time polymerase chain reaction for neuropilin expression. Results: Phenotyping results showed CIK cells having developed properly, and low levels of NRP2 were detected. On the other hand, no NRP1 expression was found. Two cancer cell lines were tested by flow cytometry: A549 cells expressed NRP1 and NRP2; U251-MG cells expressed high amounts of NRP2. CIK cell showed low levels of NRP2 expression on day 14. Conclusion: The presence of NRP2, but not NRP1, was shown for CIK cells. Recognizing NRP2 in CIK cells might help to improve CIK cell cytotoxicity

    The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry

    Get PDF
    The recent observation of current-induced domain wall (DW) motion with large velocity in ultrathin magnetic wires has opened new opportunities for spintronic devices. However, there is still no consensus on the underlying mechanisms of DW motion. Key to this debate is the DW structure, which can be of Bloch or N\'eel type, and dramatically affects the efficiency of the different proposed mechanisms. To date, most experiments aiming to address this question have relied on deducing the DW structure and chirality from its motion under additional in-plane applied fields, which is indirect and involves strong assumptions on its dynamics. Here we introduce a general method enabling direct, in situ, determination of the DW structure in ultrathin ferromagnets. It relies on local measurements of the stray field distribution above the DW using a scanning nanomagnetometer based on the Nitrogen-Vacancy defect in diamond. We first apply the method to a Ta/Co40Fe40B20(1 nm)/MgO magnetic wire and find clear signature of pure Bloch DWs. In contrast, we observe left-handed N\'eel DWs in a Pt/Co(0.6 nm)/AlOx wire, providing direct evidence for the presence of a sizable Dzyaloshinskii-Moriya interaction (DMI) at the Pt/Co interface. This method offers a new path for exploring interfacial DMI in ultrathin ferromagnets and elucidating the physics of DW motion under current.Comment: Main text and Supplementary Information, 33 pages and 12 figure

    Partitioning of trace elements in a entrained flow IGCC plant: Influence of selected operational conditions

    Full text link
    The partitioning of trace elements and the influence of the feed conditions (50:50 coal/pet-coke feed blend and limestone addition) was investigated in this study. To this end feed fuel, fly ash and slag samples were collected under different operational conditions at the 335 MW Puertollano IGCC power plant (Spain) and subsequently analysed. The partitioning of elements in this IGCC plant may be summarised as follows: (a) high volatile elements (70–>99% in gas phase): Hg, Br, I, Cl and S; (b) moderately volatile elements (up to 40% in gas phase and 60% in fly ash): As, Sb, Se, B, F, Cd, Tl, Zn and Sn; (c) elements with high condensation potential: (>90% in fly ash): Pb, Ge, Ga and Bi; (d) elements enriched similarly in fly ash and slag 30–60% in fly ash: Cu, W, (P), Mo, Ni and Na; and (e) low volatile elements (>70% in slag): Cs, Rb, Co, K, Cr, V, Nb, Be, Hf, Ta, Fe, U, Ti, Al, Si, Y, Sr, Th, Zr, Mg, Ba, Mn, REEs, Ca and Li. The volatility of As, Sb, and Tl and the slagging of S, B, Cl, Cd and low volatile elements are highly influenced by the fuel geochemistry and limestone dosages, respectively

    Anastrepha grandis: bioecologia e manejo.

    Get PDF
    bitstream/item/143905/1/Documento-404.pd

    El uso de circunferencias corporales para la predicción de la grasa intra-abdominal en mujeres obesas con el síndrome del ovario poliquístico

    Get PDF
    Introduction: Computerizd tomography (CT) is the gold standard for the evaluation of intra- (IAF) and total (TAF) abdominal fat; however, the high cost of the procedure and exposure to radiation limit its routine use. Objective: To develop equations that utilize anthropometric measures for the estimate of IAF and TAF in obese women with polycystic ovary syndrome (PCOS). Methods: The weight, height, BMI, and abdominal (AC), waist (WC), chest (CC), and neck (NC) circumferences of thirty obese women with PCOS were measured, and their IAF and TAF were analyzed by CT. Results: The anthropometric variables AC, CC, and NC were chosen for the TAF linear regression model because they were better correlated with the fat deposited in this region. The model proposed for TAF (predicted) was: 4.63725 + 0.01483 x AC - 0.00117 x NC - 0.00177 x CC (R-2 = 0.78); and the model proposed for IAF was: IAF (predicted) = 1.88541 + 0.01878 x WC + 0.05687 x NC - 0.01529 x CC (R-2 = 0.51). AC was the only independent predictor of TAF (p &lt; 0.01). Conclusion: The equations proposed showed good correlation with the real value measured by CT, and can be used in clinical practice. (Nutr Hosp. 2012;27:1662-1666) DOI:10.3305/nh.2012.27.5.5933Introducción: La tomografía computarizada (TC) es el estándar de oro para la evaluación de la grasa intra-abdominal (GIA) y abdominal total (GAT), pero los altos costos y la exposición a la radiación limitan su uso rutinario. Objetivo: Desarrollar ecuaciones para la estimación de la GIA y la GAT en mujeres obesas con el síndrome del ovario poliquístico, utilizando medidas antropométricas. Métodos: Se evaluó el peso, la altura, el IMC y las circunferencias abdominal (CA), cintura (CC), pecho (CP) y cuello (Ccu) de 30 mujeres obesas con SOP. La GIA y GAT fueron analizados por la TC. Resultados:El modelo propuesto fue: GAT = 4,63725 + 0,01483 x CA - 0.00117 x CCu - 0,00177 x CP (R2= 0,78); y para la GIA fue: GIA = 1, 88541 + 0, 01878 x CC + 0,05687 x CCu - 0,01529 x CP (R² = 0,51). La CA fue La única variable predictora independiente de la GAT (p < 0,01). Conclusión: Las equaciones propuestas correlacionaronse bien con el valor real, medido a través de la TC, y se puede utilizarlas en la práctica clínica

    Transition between Variscan and Alpine cycles in the Pyrenean-Cantabrian Mountains (N Spain): Geodynamic evolution of near-equator European Permian basins

    Get PDF
    In the northern Iberian Peninsula, the Pyrenean-Cantabrian orogenic belt extends E-W for ca. 1000 km between the Atlantic Ocean and Mediterranean Sea. This orogen developed from the collision between Iberia and Eurasia, mainly in Cenozoic times. Lower-middle Permian sediments crop out in small, elongated basins traditionally considered independent from each other due to misinterpretations on incomplete lithostratigraphic data and scarce radiometric ages. Here, we integrate detailed stratigraphic, sedimentary, tectonic, paleosol and magmatic data from well-dated lithostratigraphic units. Our data reveal a similar geodynamic evolution across the Pyrenean-Cantabrian Ranges at the end of the Variscan cycle. Lower-middle Permian basins started their development under an extensional regime related to the end of the Variscan Belt collapse, which stars in late Carboniferous times in the Variscan hinterland. This orogenic collapse transitioned to Pangea breakup at the middle Permian times in the study region. Sedimentation occurred as three main tectono-sedimentary extensional phases. A first phase (Asselian-Sakmarian), which may have even started at the end of the Carboniferous (Gzhelian) in some sections, is mainly represented by alluvial sedimentation associated with calc-alkaline magmatism. A second stage (late Artinskian-early Kungurian), represented by al-luvial, lacustrine and palustrine sediments with intercalations of calc-alkaline volcanic beds, shows a clear up-ward aridification trend probably related to the late Paleozoic icehouse-greenhouse transition. The third and final stage (Wordian-Capitanian) comprised of alluvial deposits with intercalations of alkaline and mafic beds, rarely deposited in the Cantabrian Mountains, and underwent significant pre-and Early Mesozoic erosion in some segments of the Pyrenees. This third stage can be related to a transition towards the Pangea Supercontinent breakup, not generalized until the Early/Middle Triassic at this latitude because the extensional process stopped about 10 Myr (Pyrenees) to 30 Myr (Cantabrian Mountains). When compared to other well-dated basins near the paleoequator, the tectono-sedimentary and climate evolution of lower-middle Permian basins in Western and Central Europe shows common features. Specifically, we identify coeval periods with magmatic activity, extensional tectonics, high subsidence rates and thick sedi-mentary record, as well as prolonged periods without sedimentation. This comparison also identifies some evolutionary differences between Permian basins that could be related to distinct locations in the hinterland or foreland of the Variscan orogen. Our data provide a better understanding of the major crustal re-equilibration and reorganization that took place near the equator in Western-Central Europe during the post-Variscan period

    Spectroscopic evidence for topological band structure in FeTe0.55_{0.55}Se0.45_{0.45}

    Full text link
    FeTe0.55_{0.55}Se0.45_{0.45}(FTS) occupies a special spot in modern condensed matter physics at the intersections of electron correlation, topology, and unconventional superconductivity. The bulk electronic structure of FTS is predicted to be topologically nontrivial thanks to the band inversion between the dxzd_{xz} and pzp_z bands along Γ\Gamma-ZZ. However, there remain debates in both the authenticity of the Dirac surface states (DSS) and the experimental deviations of band structure from the theoretical band inversion picture. Here we resolve these debates through a comprehensive ARPES investigation. We first observe a persistent DSS independent of kzk_z. Then, by comparing FTS with FeSe which has no band inversion along Γ\Gamma-ZZ, we identify the spectral weight fingerprint of both the presence of the pzp_z band and the inversion between the dxzd_{xz} and pzp_z bands. Furthermore, we propose a reconciling band structure under the framework of a tight-binding model preserving crystal symmetry. Our results highlight the significant influence of correlation on modifying the band structure and make a strong case for the existence of topological band structure in this unconventional superconductor

    Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    Get PDF
    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.Peer ReviewedPostprint (published version

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Yeast Mitochondrial Biogenesis: A Role for the PUF RNA-Binding Protein Puf3p in mRNA Localization

    Get PDF
    The asymmetric localization of mRNA plays an important role in coordinating posttranscriptional events in eukaryotic cells. We investigated the peripheral mitochondrial localization of nuclear-encoded mRNAs (MLR) in various conditions in which the mRNA binding protein context and the translation efficiency were altered. We identified Puf3p, a Pumilio family RNA-binding protein, as the first trans-acting factor controlling the MLR phenomenon. This allowed the characterization of two classes of genes whose mRNAs are translated to the vicinity of mitochondria. Class I mRNAs (256 genes) have a Puf3p binding motif in their 3'UTR region and many of them have their MLR properties deeply affected by PUF3 deletion. Conversely, mutations in the Puf3p binding motif alter the mitochondrial localization of BCS1 mRNA. Class II mRNAs (224 genes) have no Puf3p binding site and their asymmetric localization is not affected by the absence of PUF3. In agreement with a co-translational import process, we observed that the presence of puromycin loosens the interactions between most of the MLR-mRNAs and mitochondria. Unexpectedly, cycloheximide, supposed to solidify translational complexes, turned out to destabilize a class of mRNA-mitochondria interactions. Classes I and II mRNAs, which are therefore transported to the mitochondria through different pathways, correlated with different functional modules. Indeed, Class I genes code principally for the assembly factors of respiratory chain complexes and the mitochondrial translation machinery (ribosomes and translation regulators). Class II genes encode proteins of the respiratory chain or proteins involved in metabolic pathways. Thus, MLR, which is intimately linked to translation control, and the activity of mRNA-binding proteins like Puf3p, may provide the conditions for a fine spatiotemporal control of mitochondrial protein import and mitochondrial protein complex assembly. This work therefore provides new openings for the global study of mitochondria biogenesis
    corecore