187 research outputs found

    Suppressing Unwanted Memories Reduces Their Unintended Influences

    Get PDF
    The ability to control unwanted memories is critical for maintaining cognitive function and mental health. Prior research has shown that suppressing the retrieval of unwanted memories impairs their retention, as measured on intentional (direct) memory tests. Here we review emerging evidence revealing that retrieval suppression can also reduce the unintended influence of suppressed traces. In particular, retrieval suppression (1) gradually diminishes the tendency for memories to intrude into awareness, and (2) reduces memories’ unintended expressions on indirect memory tests. We present a neural account in which, during suppression, retrieval cues elicit hippocampally-triggered neocortical activity that briefly reinstates features of the original event, which, in turn, are suppressed by targeted neocortical and hippocampal inhibition. This reactivation-dependent reinstatement principle could provide a broad mechanism by which suppressing retrieval of intrusive memories limits their indirect influences

    Optimal data partitioning, multispecies coalescent and Bayesian concordance analyses resolve early divergences of the grape family (Vitaceae)

    Get PDF
    Evolutionary rate heterogeneity and rapid radiations are common phenomena in organismal evolution and represent major challenges for reconstructing deep-level phylogenies. Here we detected substantial conflicts in and among data sets as well as uncertainty concerning relationships among lineages of Vitaceae from individual gene trees, supernetworks and tree certainty values. Congruent deep-level relationships of Vitaceae were retrieved by comprehensive comparisons of results from optimal partitioning analyses, multispecies coalescent approaches and the Bayesian concordance method. We found that partitioning schemes selected by PartitionFinder were preferred over those by gene or by codon position, and the unpartitioned model usually performed the worst. For a data set with conflicting signals, however, the unpartitioned model outperformed models that included more partitions, demonstrating some limitations to the effectiveness of concatenation for these data. For a transcriptome data set, fast coalescent methods (STAR and MP-EST) and a Bayesian concordance approach yielded congruent topologies with trees from the concatenated analyses and previous studies. Our results highlight that well-resolved gene trees are critical for the effectiveness of coalescent-based methods. Future efforts to improve the accuracy of phylogenomic analyses should emphasize the development of newmethods that can accommodate multiple biological processes and tolerate missing data while remaining computationally tractable. (C) The Willi Hennig Society 2017.National Natural Science Foundation of China [NNSF 31500179, 31590822, 31270268]; National Basic Research Program of China [2014CB954101]; National Science Foundation [DEB0743474]; Smithsonian Scholarly Studies Grant Program and the Endowment Grant Program; CAS/SAFEA International Partnership Program for Creative Research Teams; Laboratory of Analytical Biology of the National Museum of Natural History, Smithsonian Institution; Science and Technology Basic Work [2013FY112100]info:eu-repo/semantics/publishedVersio

    The configuration of the seismic zone and the downgoing slab in southern Peru

    Get PDF
    Using data from temporary networks of portable seismographs in southern Peru, we located 888 shallow and intermediate depth events near a proposed discontinuity in the seismic zone there. These events reveal a prominent contortion, instead of a discontinuity, that trends approximately N80°E, parallel to the direction of relative plate motion. North of about 15°S, the seismic zone beneath Peru is nearly horizontal, but south of about 15.5°S, it dips at about 25°. Volcanoes lie above the more steeply dipping zone where earthquakes occur between 120 and 140 km, and the volcanic line in southern Peru stops abruptly at the contortion

    Remote Effects of Hippocampal Sclerosis on Effective Connectivity during Working Memory Encoding: A Case of Connectional Diaschisis?

    Get PDF
    Accumulating evidence suggests a role for the medial temporal lobe (MTL) in working memory (WM). However, little is known concerning its functional interactions with other cortical regions in the distributed neural network subserving WM. To reveal these, we availed of subjects with MTL damage and characterized changes in effective connectivity while subjects engaged in WM task. Specifically, we compared dynamic causal models, extracted from magnetoencephalographic recordings during verbal WM encoding, in temporal lobe epilepsy patients (with left hippocampal sclerosis) and controls. Bayesian model comparison indicated that the best model (across subjects) evidenced bilateral, forward, and backward connections, coupling inferior temporal cortex (ITC), inferior frontal cortex (IFC), and MTL. MTL damage weakened backward connections from left MTL to left ITC, a decrease accompanied by strengthening of (bidirectional) connections between IFC and MTL in the contralesional hemisphere. These findings provide novel evidence concerning functional interactions between nodes of this fundamental cognitive network and sheds light on how these interactions are modified as a result of focal damage to MTL. The findings highlight that a reduced (top-down) influence of the MTL on ipsilateral language regions is accompanied by enhanced reciprocal coupling in the undamaged hemisphere providing a first demonstration of “connectional diaschisis.

    Remote Effects of Hippocampal Sclerosis on Effective Connectivity during Working Memory Encoding: A Case of Connectional Diaschisis?

    Get PDF
    Accumulating evidence suggests a role for the medial temporal lobe (MTL) in working memory (WM). However, little is known concerning its functional interactions with other cortical regions in the distributed neural network subserving WM. To reveal these, we availed of subjects with MTL damage and characterized changes in effective connectivity while subjects engaged in WM task. Specifically, we compared dynamic causal models, extracted from magnetoencephalographic recordings during verbal WM encoding, in temporal lobe epilepsy patients (with left hippocampal sclerosis) and controls. Bayesian model comparison indicated that the best model (across subjects) evidenced bilateral, forward, and backward connections, coupling inferior temporal cortex (ITC), inferior frontal cortex (IFC), and MTL. MTL damage weakened backward connections from left MTL to left ITC, a decrease accompanied by strengthening of (bidirectional) connections between IFC and MTL in the contralesional hemisphere. These findings provide novel evidence concerning functional interactions between nodes of this fundamental cognitive network and sheds light on how these interactions are modified as a result of focal damage to MTL. The findings highlight that a reduced (top-down) influence of the MTL on ipsilateral language regions is accompanied by enhanced reciprocal coupling in the undamaged hemisphere providing a first demonstration of “connectional diaschisis.

    The Derived Allele of ASPM Is Associated with Lexical Tone Perception

    Get PDF
    The ASPM and MCPH1 genes have been implicated in the adaptive evolution of the human brain [Mekel-Bobrov N. et al., 2005. Ongoing adaptive evolution of ASPM, a brain size determinant in homo sapiens. Science 309; Evans P.D. et al., 2005. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309]. Curiously, experimental attempts have failed to connect the implicated SNPs in these genes with higher-level brain functions. These results stand in contrast with a population-level study linking the population frequency of their alleles with the tendency to use lexical tones in a language [Dediu D., Ladd D.R., 2007. Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and microcephalin. Proc. Natl. Acad. Sci. U.S.A. 104]. In the present study, we found a significant correlation between the load of the derived alleles of ASPM and tone perception in a group of European Americans who did not speak a tone language. Moreover, preliminary results showed a significant correlation between ASPM load and hemodynamic responses to lexical tones in the auditory cortex, and such correlation remained after phonemic awareness, auditory working memory, and non-verbal IQ were controlled. As in previous studies, no significant correlation between ASPM and cognitive measures were found. MCPH1 did not correlate with any measures. These results suggest that the association between the recently derived allele of ASPM is likely to be specific and is tied to higher level brain functions in the temporal cortex related to human communication

    Dissociation between the Activity of the Right Middle Frontal Gyrus and the Middle Temporal Gyrus in Processing Semantic Priming

    Get PDF
    The aim of this event-related functional magnetic resonance imaging (fMRI) study was to test whether the right middle frontal gyrus (MFG) and middle temporal gyrus (MTG) would show differential sensitivity to the effect of prime-target association strength on repetition priming. In the experimental condition (RP), the target occurred after repetitive presentation of the prime within an oddball design. In the control condition (CTR), the target followed a single presentation of the prime with equal probability of the target as in RP. To manipulate semantic overlap between the prime and the target both conditions (RP and CTR) employed either the onomatopoeia “oink” as the prime and the referent “pig” as the target (OP) or vice-versa (PO) since semantic overlap was previously shown to be greater in OP. The results showed that the left MTG was sensitive to release of adaptation while both the right MTG and MFG were sensitive to sequence regularity extraction and its verification. However, dissociated activity between OP and PO was revealed in RP only in the right MFG. Specifically, target “pig” (OP) and the physically equivalent target in CTR elicited comparable deactivations whereas target “oink” (PO) elicited less inhibited response in RP than in CTR. This interaction in the right MFG was explained by integrating these effects into a competition model between perceptual and conceptual effects in priming processing

    A Method for the Quantification of Nanoparticle Dispersion in Nanocomposites Based on Fractal Dimension

    Get PDF
    Dispersion quantification provides critical insight and towards understanding and improving the influence of nanoparticle dispersion on the behaviour of the nanocomposite at macro and nanoscale level. This study was precipitated by the limitations of most methods for quantifying dispersion to sufficiently handle issues regarding scalability, complexity, consistency and versatility. A quantity (D 0 ) based on the variance of the fractal dimension was used to quantify dispersion successfully. The concept was validated using real microscopy images. The approach is simple and versatile to implement
    corecore