512 research outputs found

    Understanding of Prospective Mathematics Teachers of the Concept of Diagonal

    Get PDF
    This study aims to investigate the concept images of prospective mathematics teachers about the concept of diagonal. With this aim, case study method was used in the study. The participants of the study were consisted of 7 prospective teachers educating at the Department of Mathematics Education. Criterion sampling method was used to select the participants and the criterion was determined as taking the course of geometry in the graduate program. Data was collected in two steps: a diagnostic test form about the definition and features of diagonal was applied to participants firstly and according to the answers of the participants to the diagnostic test form, semi-structured interviews were carried out. Data collected form the diagnostic test form and the semi-structured interviews were analyzed with descriptive analysis. According to the results of the study, it is understood that the prospective teachers had difficulties with the diagonals of parallelogram, rhombus and deltoid. Moreover, it is also seen that the prospective teachers were inadequate to support their ideas with further explanations although they could answer correctly. İt is thought that the inadequacy of the prospective teachers stems from the inadequacy related to proof.DOI: http://dx.doi.org/10.22342/jme.8.2.4102.165-18

    Collecting information on estrus in cattle using the internet of things

    Get PDF
    ABSTRACT Monitoring the movements of ruminant animals is one of the most challenging tasks. In animals that act according to their habits, it is difficult to label such movements and transfer them to farmers. Monitoring and recording the movement and behavior of animals on a farm is an adopted method for successfully determining the duration of the estrus cycle in ruminant animals. The Internet is a technology that offers remarkable solutions for such applications. The aim of this study is to determine the hourly step counts and to find the estrus period in the most accurate way with a circuit design applied to the ankles of animals using an IoT-supported microcontroller. The data is transferred to the web environment wirelessly and monitored via wi-fi communication signals. This wireless wearable and network equipment determines the step count and monitors the animal's abnormal body temperature. An IoT-supported microcontroller provides wireless communication, high-speed data transmission, and low power consumption. Insemination was ensured by testing different animals on the application farm. The data is monitored in real-time, and the system gives an alert. Low cost, high reliability, and being able to be watched over the internet are the advantages of the system. This study helped develop new techniques and provided a low-cost proposition for testing wearable technologies on animals

    Vaginal metastasis of a Ewing sarcoma five years after resection of the primary tumor

    Get PDF
    A 35-year-old female presented with pain and swelling of the distal left radius. A diagnosis of Ewing sarcoma was made and she underwent neoadjuvant chemotherapy and surgery. Macroscopic viable areas remained on the map of the surgical specimen; as such, she was classified as a poor responder and received high dose adjuvant chemotherapy. She remained disease-free for five years, until age 40. A vaginal polyp was then detected during a routine gynaecologic examination. It was removed and histopathology revealed metastatic Ewing sarcoma

    Lateral variations in the signature of earthquake‐generated deposits in Lake Iznik, NW Turkey

    Get PDF
    Using lake-sediment cores to document past seismicity requires a comprehen- sive understanding of possible lateral variations in depositional processes. This study aims to reveal the lateral variations in earthquake-induced event deposits throughout Lake Iznik, a large lake located on the middle strand of the North Anatolian Fault. Based on stratigraphic, sedimentological and geochemical anal- yses of 14 sediment cores from two subbasins across the lake, five different types of event deposits (T1–T5) were identified and characterised. One event deposit type (T5) is restricted to a delta mouth, characterised by the occurrence of au- thigenic Fe-Mn carbonates and interpreted to result from flood events. The four other types of event deposits are characterised by their synchronicity between cores and their age consistency with historical earthquakes and are interpreted to be likely generated by earthquakes. The locally prominent 1065 CE historical earthquake that ruptured the sub-lacustrine Iznik Fault produced at least three different types of event deposits. One deposit type (T2) is only observed for this very local earthquake, implying that the type of event deposit might also depend on ground-motion parameters. At the lake scale, the occurrence of various event deposits depends on the flow distance from the source of sediment destabilisa- tions to the coring site

    1,4-Dihydropyridine as a Promising Scaffold for Novel Antimicrobials Against Helicobacter pylori

    Get PDF
    The increasing occurrence of multidrug-resistant strains of the gastric carcinogenic bacterium Helicobacter pylori threatens the efficacy of current eradication therapies. In a previous work, we found that several 1,4-dihydropyridine (DHP)-based antihypertensive drugs exhibited strong bactericidal activities against H. pylori by targeting the essential response regulator HsrA. To further evaluate the potential of 1,4-DHP as a scaffold for novel antimicrobials against H. pylori, we determined the antibacterial effects of 12 novel DHP derivatives that have previously failed to effectively block L- and T-type calcium channels. Six of these molecules exhibited potent antimicrobial activities (MIC ≤ 8 mg/L) against three different antibiotic-resistant strains of H. pylori, while at least one compound resulted as effective as metronidazole. Such antimicrobial actions appeared to be specific against Epsilonproteobacteria, since no deleterious effects were appreciated on Escherichia coli and Staphylococcus epidermidis. The new bactericidal DHP derivatives targeted the H. pylori regulator HsrA and inhibited its DNA binding activity according to both in vitro and in vivo analyses. Molecular docking predicted a potential druggable binding pocket in HsrA, which could open the door to structure-based design of novel anti-H. pylori drugs

    Resource dedication problem in a multi-project environment

    Get PDF
    There can be different approaches to the management of resources within the context of multi-project scheduling problems. In general, approaches to multiproject scheduling problems consider the resources as a pool shared by all projects. On the other hand, when projects are distributed geographically or sharing resources between projects is not preferred, then this resource sharing policy may not be feasible. In such cases, the resources must be dedicated to individual projects throughout the project durations. This multi-project problem environment is defined here as the resource dedication problem (RDP). RDP is defined as the optimal dedication of resource capacities to different projects within the overall limits of the resources and with the objective of minimizing a predetermined objective function. The projects involved are multi-mode resource constrained project scheduling problems with finish to start zero time lag and non-preemptive activities and limited renewable and nonrenewable resources. Here, the characterization of RDP, its mathematical formulation and two different solution methodologies are presented. The first solution approach is a genetic algorithm employing a new improvement move called combinatorial auction for RDP, which is based on preferences of projects for resources. Two different methods for calculating the projects’ preferences based on linear and Lagrangian relaxation are proposed. The second solution approach is a Lagrangian relaxation based heuristic employing subgradient optimization. Numerical studies demonstrate that the proposed approaches are powerful methods for solving this problem

    Seismic stratigraphy and sediment cores reveal lake-level fluctuations in Lake Iznik (NW Turkey) over the past ∼70 ka

    Get PDF
    Our study aims to understand the palaeohydrological history of Lake Iznik and unravel the complex interplay between climatic, tectonic, and environmental factors that have shaped this Turkish basin. Through the analysis of seismic stratigraphy and sediment cores, we reveal a significant lowstand, indicating a lake level 60 m lower than today at ∼70 ka BP. Subsequently, a major phase of stepwise transgression is evidenced by 13 buried palaeoshorelines between ∼70 and 45 ka BP. From 45 to ∼10 ka cal BP, strong currents controlled the sedimentation in the lake, as evidenced by the occurrence of contourite drifts. Between ∼14 and 10 ka cal. BP, a major lowstand indicating a drier climate interrupted the current-controlled sedimentation regime. From ∼10 ka cal. BP, the subsequent increase in lake level occurred at the same time as the reconnection between the Mediterranean and Black seas. Archaeological evidence, including submerged structures of a basilica, establishes a link between lake-level changes and human settlement during the last millennium. The level of Lake Iznik has since continued to fluctuate due to climate change, tectonic events, and human activity

    Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge

    Get PDF
    In clinics, blood coagulation time measurements are performed using mechanical measurements with blood plasma. Such measurements are challenging to do in a lab-on-a-chip (LoC) system using a small volume of whole blood. Existing LoC systems use indirect measurement principles employing optical or electrochemical methods. We developed an LoC system using mechanical measurements with a small volume of whole blood without requiring sample preparation. The measurement is performed in a microfluidic channel where two fibers are placed inline with a small gap in between. The first fiber operates near its mechanical resonance using remote magnetic actuation and immersed in the sample. The second fiber is a pick-up fiber acting as an optical sensor. The microfluidic channel is engineered innovatively such that the blood does not block the gap between the vibrating fiber and the pick-up fiber, resulting in high signal-to-noise ratio optical output. The control plasma test results matched well with the plasma manufacturer’s datasheet. Activated-partial-thromboplastin-time tests were successfully performed also with human whole blood samples, and the method is proven to be effective. Simplicity of the cartridge design and cost of readily available materials enable a low-cost point-of-care device for blood coagulation measurements.Publisher versio
    corecore