2,070 research outputs found
Longitudinal magnetoresistance in Co-doped BaFe2As2 and LiFeAs single crystals: Interplay between spin fluctuations and charge transport in iron-pnictides
The longitudinal in-plane magnetoresistance (LMR) has been measured in
different Ba(Fe_(1-x)Co_x)2As2 single crystals and in LiFeAs. For all these
compounds, we find a negative LMR in the paramagnetic phase whose magnitude
increases as H^2. We show that this negative LMR can be readily explained in
terms of suppression of the spin fluctuations by the magnetic field. In the
Co-doped samples, the absolute value of the LMR coefficient is found to
decrease with doping content in the paramagnetic phase. The analysis of its T
dependence in an itinerant nearly antiferromagnetic Fermi liquid model
evidences that the LMR displays a qualitative change of T variation with
increasing Co content. The latter occurs at optimal doping for which the
antiferromagnetic ground state is suppressed. The same type of analysis for the
negative LMR measured in LiFeAs suggests that this compound is on the verge of
magnetism.Comment: 6 pages, 6 figure
Recommended from our members
Seven-year climatology of dust opacity on Mars
This paper describes the procedure we have used to produce multi-annual dust scenarios for Martian years 24 to 30 from a multi-instrument dataset of total dust opacity observations. This procedure includes gridding the observations on a pre-defined longitude-latitude grid with 1 sol resolution in time, and spatially interpolating the results to obtain complete daily maps of total dust opacity. We used weighted binning as gridding technique, and spatial kriging as method of interpolation. The new dust scenarios are available as NetCDF files, easy to interface to any model including global circulation and mesoscale models for the Martian atmosphere
High Field determination of superconducting fluctuations in high-Tc cuprates
Large pulsed magnetic fields up to 60 Tesla are used to suppress the
contribution of superconducting fluctuations (SCF) to the ab-plane conductivity
above Tc in a series of YBa2Cu3O6+x single crystals. The fluctuation
conductivity is found to vanish nearly exponentially with temperature, allowing
us to determine precisely the field H'c(T) and the temperature T'c above which
the SCFs are fully suppressed. T'c is always found much smaller than the
pseudogap temperature. A careful investigation near optimal doping shows that
T'c is higher than the pseudogap T*, which indicates that the pseudogap cannot
be assigned to preformed pairs. For nearly optimally doped samples, the
fluctuation conductivity can be accounted for by gaussian fluctuations
following the Ginzburg-Landau scheme. A phase fluctuation contribution might be
invoked for the most underdoped samples in a T range which increases when
controlled disorder is introduced by electron irradiation. Quantitative
analysis of the fluctuating magnetoconductance allows us to determine the
critical field Hc2(0) which is found to be quite similar to H'c(0) and to
increase with hole doping. Studies of the incidence of disorder on both T'c and
T* enable us to propose a three dimensional phase diagram including a disorder
axis, which allows to explain most observations done in other cuprate families.Comment: 10 pages, 10 figures, invited paper at the M2SHTSC Conference
Washington (2012
Atomic coexistence of superconductivity and incommensurate magnetic order in the Ba(Fe1-xCox)2As2 pnictide
75As NMR and susceptiblity were measured in a Ba(Fe1-xCox)2As2 single crystal
for x=6%. Nuclear Magnetic Resonance (NMR) spectra and relaxation rates allow
to show that all Fe sites experience an incommensurate magnetic ordering below
T=31K. Comparison with undoped compound allows to estimate a typical moment of
0.05 muB. Anisotropy of the NMR widths can be interpreted using a model of
incommensurability with a wavevector (1/2-eps,0,l) with eps of the order of
0.04. Below TC=21.8K, a full volume superconductivity develops as shown by
susceptibility and relaxation rate, and magnetic order remains unaffected,
demonstrating coexistence of both states on each Fe site.Comment: 4 pages, 4 figure
3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability and habitability
The inner edge of the classical habitable zone is often defined by the
critical flux needed to trigger the runaway greenhouse instability. This 1D
notion of a critical flux, however, may not be so relevant for inhomogeneously
irradiated planets, or when the water content is limited (land planets).
Here, based on results from our 3D global climate model, we find that the
circulation pattern can shift from super-rotation to stellar/anti stellar
circulation when the equatorial Rossby deformation radius significantly exceeds
the planetary radius. Using analytical and numerical arguments, we also
demonstrate the presence of systematic biases between mean surface temperatures
or temperature profiles predicted from either 1D or 3D simulations.
Including a complete modeling of the water cycle, we further demonstrate that
for land planets closer than the inner edge of the classical habitable zone,
two stable climate regimes can exist. One is the classical runaway state, and
the other is a collapsed state where water is captured in permanent cold traps.
We identify this "moist" bistability as the result of a competition between the
greenhouse effect of water vapor and its condensation. We also present
synthetic spectra showing the observable signature of these two states.
Taking the example of two prototype planets in this regime, namely Gl581c and
HD85512b, we argue that they could accumulate a significant amount of water ice
at their surface. If such a thick ice cap is present, gravity driven ice flows
and geothermal flux should come into play to produce long-lived liquid water at
the edge and/or bottom of the ice cap. Consequently, the habitability of
planets at smaller orbital distance than the inner edge of the classical
habitable zone cannot be ruled out. Transiting planets in this regime represent
promising targets for upcoming observatories like EChO and JWST.Comment: Accepted for publication in Astronomy and Astrophysics, complete
abstract in the pdf, 18 pages, 18 figure
Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling
The recently discovered exoplanet Gl581d is extremely close to the outer edge
of its system's habitable zone, which has led to much speculation on its
possible climate. We have performed a range of simulations to assess whether,
given simple combinations of chemically stable greenhouse gases, the planet
could sustain liquid water on its surface. For best estimates of the surface
gravity, surface albedo and cloud coverage, we find that less than 10 bars of
CO2 is sufficient to maintain a global mean temperature above the melting point
of water. Furthermore, even with the most conservative choices of these
parameters, we calculate temperatures above the water melting point for CO2
partial pressures greater than about 40 bar. However, we note that as Gl581d is
probably in a tidally resonant orbit, further simulations in 3D are required to
test whether such atmospheric conditions are stable against the collapse of CO2
on the surface.Comment: 9 pages, 11 figures. Accepted for publication in Astronomy &
Astrophysic
Recommended from our members
Dust cycles and storms in a Mars GCM
A number of different dust lifting parameterizations have been used to model the injection of dust from the Martian surface into the atmosphere, and the form of the resulting dust cycles and dust storms produced are found to be highly dependent on the precise form of the parameterization used, provided that it includes some threshold dependence, and particularly where radiatively active dust transport is employed. This talk will review the most interesting results from previous work. We have recently altered a key factor which particularly affects the dust lifting due to near-surface wind stress, however, so we will also present results using the new dust lifting formulation, and make some comparisons
Total suppression of superconductivity by high magnetic fields in YBa2 Cu3O6.6
We have studied in fields up to 60T the variation of the transverse
magnetoresistance (MR) of underdoped YBCO6.6 crystals either pure or with Tc
reduced down to 3.5K by electron irradiation. We evidence that the normal state
MR is restored above a threshold field H'c(T), which is found to vanish at
T'c>>Tc. In the pure YBCO6.6 sample a 50 Tesla field is already required to
completely suppress the superconducting fluctuations at Tc. While disorder does
not depress the pseudogap temperature, it reduces drastically the phase
coherence established at Tc and weakly H'c(0), T'c and the onset Tnu of the
Nernst signal which are more characteristic of the 2D local pairing.Comment: 4 pages, 4 figure
Recommended from our members
MGS accelerometer data analysis with the LMD GCM
Mars Global Surveyor aerobreaking phases, required to
achieve its mapping orbit, have yielded vertical profiles
of thermospheric densities, scale heights and temperatures
covering a broad range of local times, seasons and
spatial coordinates [Keating et al. 1998, 2001]. Phase
I covered local times from 11 to 16 h (assuming 24
"martian hours” per martian day or sols), with a latitude
coverage of approximately 40deg to 60deg N. Seasons
observed during this phase were centered around winter
solstice and altitudes of periapsis range from 115 to
135 km. The altitudes for Phase II were lower, with a
minimum around 100 km and a maximum around 120.
Martian spring was the season covered during this phase
and the local time was between 15 and 16 h. The latitude
covered by Phase II, however, was more extense
than that seen during Phase I, with a coverage from 60deg N
to basically the South Pole
Broadly tunable (440-670 nm) solid-state organic laser with disposable capsules
An innovative concept of thin-film organic solid-state laser is proposed,
with diffraction-limited output and a broad tuning range covering the visible
spectrum under UV optical pumping. The laser beam is tunable over 230 nm, from
440 to 670 nm, with a 3 nm full width at half maximum typical spectral width.
The structure consists of a compact fixed bulk optical cavity, a polymeric
intracavity etalon for wavelength tuning, as well as five different disposable
glass slides coated with a dye-doped polymer film, forming a very simple and
low-cost gain medium. The use of interchangeable/disposable "gain capsules" is
an alternative solution to photodegradation issues, since gain chips can be
replaced without realignment of the cavity. The laser lifetime of a single chip
in ambient conditions and without encapsulation was extrapolated to be around
107 pulses at a microjoule energy-per-pulse level
- …
