Large pulsed magnetic fields up to 60 Tesla are used to suppress the
contribution of superconducting fluctuations (SCF) to the ab-plane conductivity
above Tc in a series of YBa2Cu3O6+x single crystals. The fluctuation
conductivity is found to vanish nearly exponentially with temperature, allowing
us to determine precisely the field H'c(T) and the temperature T'c above which
the SCFs are fully suppressed. T'c is always found much smaller than the
pseudogap temperature. A careful investigation near optimal doping shows that
T'c is higher than the pseudogap T*, which indicates that the pseudogap cannot
be assigned to preformed pairs. For nearly optimally doped samples, the
fluctuation conductivity can be accounted for by gaussian fluctuations
following the Ginzburg-Landau scheme. A phase fluctuation contribution might be
invoked for the most underdoped samples in a T range which increases when
controlled disorder is introduced by electron irradiation. Quantitative
analysis of the fluctuating magnetoconductance allows us to determine the
critical field Hc2(0) which is found to be quite similar to H'c(0) and to
increase with hole doping. Studies of the incidence of disorder on both T'c and
T* enable us to propose a three dimensional phase diagram including a disorder
axis, which allows to explain most observations done in other cuprate families.Comment: 10 pages, 10 figures, invited paper at the M2SHTSC Conference
Washington (2012