1,112 research outputs found
Weak Measurements of Light Chirality with a Plasmonic Slit
We examine, both experimentally and theoretically, an interaction of tightly
focused polarized light with a slit on a metal surface supporting
plasmon-polariton modes. Remarkably, this simple system can be highly sensitive
to the polarization of the incident light and offers a perfect
quantum-weak-measurement tool with a built-in post-selection in the
plasmon-polariton mode. We observe the plasmonic spin Hall effect in both
coordinate and momentum spaces which is interpreted as weak measurements of the
helicity of light with real and imaginary weak values determined by the input
polarization. Our experiment combines advantages of (i) quantum weak
measurements, (ii) near-field plasmonic systems, and (iii) high-numerical
aperture microscopy in employing spin-orbit interaction of light and probing
light chirality.Comment: 5 pages, 3 figure
Conductivity in organic semiconductors hybridized with the vacuum field
Organic semiconductors have generated considerable interest for their
potential for creating inexpensive and flexible devices easily processed on a
large scale [1-11]. However technological applications are currently limited by
the low mobility of the charge carriers associated with the disorder in these
materials [5-8]. Much effort over the past decades has therefore been focused
on optimizing the organisation of the material or the devices to improve
carrier mobility. Here we take a radically different path to solving this
problem, namely by injecting carriers into states that are hybridized to the
vacuum electromagnetic field. These are coherent states that can extend over as
many as 10^5 molecules and should thereby favour conductivity in such
materials. To test this idea, organic semiconductors were strongly coupled to
the vacuum electromagnetic field on plasmonic structures to form polaritonic
states with large Rabi splittings ca. 0.7 eV. Conductivity experiments show
that indeed the current does increase by an order of magnitude at resonance in
the coupled state, reflecting mostly a change in field-effect mobility as
revealed when the structure is gated in a transistor configuration. A
theoretical quantum model is presented that confirms the delocalization of the
wave-functions of the hybridized states and the consequences on the
conductivity. While this is a proof-of-principle study, in practice
conductivity mediated by light-matter hybridized states is easy to implement
and we therefore expect that it will be used to improve organic devices. More
broadly our findings illustrate the potential of engineering the vacuum
electromagnetic environment to modify and to improve properties of materials.Comment: 16 pages, 13 figure
Temperature dependence of electric resistance and magnetoresistance of pressed nanocomposites of multilayer nanotubes with the structure of nested cones
Bulk samples of carbon multilayer nanotubes with the structure of nested
cones (fishbone structure) suitable for transport measurements, were prepared
by compressing under high pressure (~25 kbar) a nanotube precursor synthesized
through thermal decomposition of polyethylene catalyzed by nickel. The
structure of the initial nanotube material was studied using high-resolution
transmission electron microscopy. In the low-temperature range (4.2 - 100 K)
the electric resistance of the samples changes according to the law ln \rho ~
(T_0/T)^{1/3}, where T_0 ~ 7 K. The measured magnetoresistance is quadratic in
the magnetic field and linear in the reciprocal temperature. The measurements
have been interpreted in terms of two-dimensional variable-range hopping
conductivity. It is suggested that the space between the inside and outside
walls of nanotubes acts as a two-dimensional conducting medium. Estimates
suggest a high value of the density of electron states at the Fermi level of
about 5 10^{21} eV^{-1} cm^{-3}.Comment: 8 pages, 4 figures. EM photographic images on figures 1a, 1b, 1c
attached as JPG files. For correspondence mail to [email protected]
Theory of extraordinary optical transmission through subwavelength hole arrays
We present a fully three-dimensional theoretical study of the extraordinary
transmission of light through subwavelength hole arrays in optically thick
metal films. Good agreement is obtained with experimental data. An analytical
minimal model is also developed, which conclusively shows that the enhancement
of transmission is due to tunneling through surface plasmons formed on each
metal-dielectric interfaces. Different regimes of tunneling (resonant through a
''surface plasmon molecule", or sequential through two isolated surface
plasmons) are found depending on the geometrical parameters defining the
system.Comment: 4 pages, 4 figure
Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit
In this work we explore the transmission properties of a single slit in a
metallic screen. We analyze the dependence of these properties on both slit
width and angle of incident radiation. We study in detail the crossover between
the subwavelength regime and the geometrical-optics limit. In the subwavelength
regime, resonant transmission linked to the excitation of waveguide resonances
is analyzed. Linewidth of these resonances and their associated electric field
intensities are controlled by just the width of the slit. More complex
transmission spectra appear when the wavelength of light is comparable to the
slit width. Rapid oscillations associated to the emergence of different
propagating modes inside the slit are the main features appearing in this
regime.Comment: Accepted for publication in Phys. Rev.
Polarization tomography of metallic nanohole arrays
We report polarization tomography experiments on metallic nanohole arrays
with square and hexagonal symmetry. As a main result, we find that a fully
polarized input beam is partly depolarized after transmission through a
nanohole array. This loss of polarization coherence is found to be anisotropic,
i.e. it depends on the polarization state of the input beam. The depolarization
is ascribed to a combination of two factors: i) the nonlocal response of the
array due to surface plasmon propagation, ii) the non-plane wave nature of a
practical input beam.Comment: 4 pages, 3 figures, 1 table, submitted to PR
Geometrically induced modification of surface plasmons in the optical and telecom regimes
We demonstrate that the introduction of a subwavelength periodic modulation
into a metallic structure strongly modifies the guiding characteristics of the
surface plasmon modes supported by the system. Moreover, it is also shown how a
new type of a tightly confined surface plasmon polariton mode can be created by
just milling a periodic corrugation into a metallic ridge placed on top of a
metal surface
Nanolithography and manipulation of graphene using an atomic force microscope
We use an atomic force microscope (AFM) to manipulate graphene films on a
nanoscopic length scale. By means of local anodic oxidation with an AFM we are
able to structure isolating trenches into single-layer and few-layer graphene
flakes, opening the possibility of tabletop graphene based device fabrication.
Trench sizes of less than 30 nm in width are attainable with this technique.
Besides oxidation we also show the influence of mechanical peeling and
scratching with an AFM of few layer graphene sheets placed on different
substrates.Comment: 11 pages text, 5 figure
Effective low-energy theory for correlated carbon nanotubes
The low-energy theory for single-wall carbon nanotubes including Coulomb
interactions is derived and analyzed. It describes two fermion chains without
interchain hopping but coupled in a specific way by the interaction. The
strong-coupling properties are studied by bosonization, and consequences for
experiments on single armchair nanotubes are discussed.Comment: 5 pages REVTeX, includes one figur
- …