57 research outputs found

    Design of an Imaging Payload for Earth Observation from a Nanosatellite

    Get PDF
    A compact imaging payload consisting of visible-near infrared and short-wave infrared capability is being developed to demonstrate low-cost wildfire monitoring among other Earth observations. Iris is a 1U multispectral push-broom imager that is capable of generating spectral data pertinent for wildfire science and wildfire risk analysis from a CubeSat platform. This payload is slated to fly on-board Ex-Alta 2, the University of Alberta’s second CubeSat and Alberta’s contribution to the Canadian CubeSat Project, to be deployed from the International Space Station in 2022. Iris features four closely integrated designs: optical, structural, electronics, and firmware. The mechanical and electronic interfaces of Iris are suited for modular integration into 1U of other generic CubeSat structures. The design has significant constraints on mass, size, performance, and cost. The current optical design features two compact lightpaths within the housing for imaging in short-wave infrared, near-infrared, blue, and red bands (center wavelengths at 2100, 865, 490, and 665 nm, respectively). Design simulations suggest achievement of a signal-to-noise ratio greater than 20 dB across all bands and a spatial resolution of 360 mor better averaged across the field-of-view. Taken together, this demonstrates significant scientific value for minimized cost and instrument volume. This design uses exclusively commercially available lenses, providing significant overall cost savings. The structural housing of Iris consists of 6061 T6 Aluminum, which provides a light-tight optical path for the visible to near-infrared and short-wave infrared light paths, as well as mounting for the optics and printed circuit board to the CubeSat structure within the required tolerances. A 45-degree folding mirror is employed to provide an extended optical lightpath within 1U with no deployable optics. The lens and mirror mounts are fitted with manual adjustment mechanisms for post-assembly alignment of the optical elements. This feature allows the team to perform small modifications to the axial position of the lenses as well as the folding mirror plane without having to re-manufacture the structure, saving time and cost. Within Iris, a subsystem named Electra features a custom filtered CMV4000 CMOS detector from ams AG integrated alongside a custom filtered G11478-512WB InGaAs linear array from Hamamatsu. Electra is a custom printed circuit board which houses an Intel Cyclone V system-on-chip field-programmable gate array, 512 MB of DDR3 synchronous dynamic random-access memory, and other supporting infrastructure for controlling Iris imaging operations and handling spectral data. An in-house software and VHDL suite is implemented within Electra for sensor control, memory management, and all off-board communications. Software functionality includes data compression and a cloud detection algorithm, wherein images are ranked based on heuristic value of relative cloud content, together increasing scientific value per spacecraft link time. A full proto-flight model of Iris is scheduled for manufacturing and testing in Q4 2021. Following manufacturing, comprehensive validation analysis and characterization will be performed, confirming ability to meet mission requirements

    Daily-Life Monitoring of Stroke Survivors Motor Performance: The INTERACTION Sensing System

    Get PDF
    The objective of the INTERACTION Eu project is to develop and validate an unobtrusive and modular system for monitoring daily life activities, physical interactions with the environment and for training upper and lower extremity motor function in stroke subjects. This paper describes the development and preliminary testing of the project sensing platform made of sensing shirt, trousers, gloves and shoes. Modular prototypes were designed and built considering the minimal set of inertial, force and textile sensors that may enable an efficient monitoring of stroke patients. The single sensing elements are described and the results of their preliminary lab-level testing are reported

    Daily-life tele-monitoring of motor performance in stroke survivors

    Get PDF
    The objective of the EU project INTERACTION is to develop an unobtrusive and modular sensing system for objective monitoring of daily-life motor performance of stroke survivors. This will enable clinical professionals to advise their patients about their continued daily-life activity profile and home training, and evaluate and optimize rehabilitation programs.A modular textile-integrated sensing system was developed and performance and capacity measures were proposed and clinically tested in stroke subject.Telemonitoring facilities were developed and tested. In the last stage of the project, the system will be tested during daily-life

    Implementation of coverage with evidence development schemes for medical devices : a decision tool for late technology adopter countries

    Get PDF
    Experiences with coverage with evidence development (CED) schemes are fairly limited in Central and Eastern European (CEE) countries, which are usually late adopters of new health technologies. Our aim was to put forward recommendations on how CEE health technology assessment bodies and payer organizations can apply CED to reduce decision uncertainty on reimbursement of medical devices, with a particular focus on transferring the structure and data from CED schemes in early technology adopter countries in Western Europe. Structured interviews on the practices and feasibility of transferring CED schemes were conducted and subsequently, a draft tool for the systematic classification of decision alternatives and recommendations was developed. The decision tool was reviewed in a focus group discussion and validated within a wider group of CEE experts in a virtual workshop. Transferability assessment is needed in case of (1) joint implementation of a CED scheme; (2) transferring the structure of an existing CED scheme to a CEE country; (3) reimbursement decisions that are linked to outcomes of an ongoing CED scheme in another country and (4) real-world evidence transferred from completed CED schemes. Efficient use of available resources may be improved by adequately transferring evidence and policy tools from early technology adopter countries

    Ergocalciferol and Microcirculatory Function in Chronic Kidney Disease and Concomitant Vitamin D Deficiency: An Exploratory, Double Blind, Randomised Controlled Trial

    Get PDF
    Vitamin D deficiency and endothelial dysfunction are non-traditional risk factors for cardiovascular events in chronic kidney disease. Previous studies in chronic kidney disease have failed to demonstrate a beneficial effect of vitamin D on arterial stiffness, left ventricular mass and inflammation but none have assessed the effect of vitamin D on microcirculatory endothelial function.We conducted a randomised controlled trial of 38 patients with non diabetic chronic kidney disease stage 3-4 and concomitant vitamin D deficiency (<16 ng/dl) who received oral ergocalciferol (50,000 IU weekly for one month followed by 50,000 IU monthly) or placebo over 6 months. The primary outcome was change in microcirculatory function measured by laser Doppler flowmetry after iontophoresis of acetylcholine. Secondary endpoints were tissue advanced glycation end products, sublingual functional capillary density and flow index as well as macrovascular parameters. Parallel in vitro experiments were conducted to determine the effect of ergocalciferol on cultured human endothelial cells.Twenty patients received ergocalciferol and 18 patients received placebo. After 6 months, there was a significant improvement in the ergocalciferol group in both endothelium dependent microcirculatory vasodilatation after iontophoresis of acetylcholine (p = 0.03) and a reduction in tissue advanced glycation end products (p = 0.03). There were no changes in sublingual microcirculatory parameters. Pulse pressure (p = 0.01) but not aortic pulse wave velocity was reduced. There were no significant changes in bone mineral parameters, blood pressure or left ventricular mass index suggesting that ergocalciferol improved endothelial function independently of these parameters. In parallel experiments, expression of endothelial nitric oxide synthase and activity were increased in human endothelial cells in a dose dependent manner.Ergocalciferol improved microcirculatory endothelial function in patients with chronic kidney disease and concomitant vitamin D deficiency. This process may be mediated through enhanced expression and activity of endothelial nitric oxide synthase.Clinical trials.gov NCT00882401

    Increasing vegetable intakes: rationale and systematic review of published interventions

    Get PDF
    Purpose While the health benefits of a high fruit and vegetable consumption are well known and considerable work has attempted to improve intakes, increasing evidence also recognises a distinction between fruit and vegetables, both in their impacts on health and in consumption patterns. Increasing work suggests health benefits from a high consumption specifically of vegetables, yet intakes remain low, and barriers to increasing intakes are prevalent making intervention difficult. A systematic review was undertaken to identify from the published literature all studies reporting an intervention to increase intakes of vegetables as a distinct food group. Methods Databases—PubMed, PsychInfo and Medline—were searched over all years of records until April 2015 using pre-specified terms. Results Our searches identified 77 studies, detailing 140 interventions, of which 133 (81 %) interventions were conducted in children. Interventions aimed to use or change hedonic factors, such as taste, liking and familiarity (n = 72), use or change environmental factors (n = 39), use or change cognitive factors (n = 19), or a combination of strategies (n = 10). Increased vegetable acceptance, selection and/or consumption were reported to some degree in 116 (83 %) interventions, but the majority of effects seem small and inconsistent. Conclusions Greater percent success is currently found from environmental, educational and multi-component interventions, but publication bias is likely, and long-term effects and cost-effectiveness are rarely considered. A focus on long-term benefits and sustained behaviour change is required. Certain population groups are also noticeably absent from the current list of tried interventions

    Measurement of depth of burns by laser Doppler perfusion imaging

    Get PDF
    Laser Doppler perfusion imaging (LDPI), is a further development in laser Doppler flowmetry (LDF). Its advantage is that it enables assessment of microvascular blood flow in a predefined skin area rather than, as for LDF, in one place. In many ways this method seems to be more promising than LDF in the assessment of burn wounds. However, several methodological issues that are inherent in the LDPI technique, and are relevant for the assessment of burn depth, must be clarified. These include the effect of scanning distance, curvature of the tissue, thickness of topical wound dressings, and pathophysiological effects of skin colour, blisters, and wound fluids. Furthermore, we soon realised that to examine the perfusion image generated by LDPI adequately the process of analysis was appreciably improved by the simultaneous use of digital photography. In the present investigation we used both in vitro and in vivo models and also examined burned patients, and found that the listed factors all significantly affected the LDPI output signal. However, if these factors are known to the examiner, most of them can be adjusted for. If the technique is further improved by minimizing such effects and by reducing the practical difficulties of applying it to a burned patient in the burns unit, the technique may find uses in everyday clinical decision-making
    • …
    corecore