20 research outputs found

    Chapitre 14: Phytopathogènes et stratégies de contrôle en aquaponie

    Full text link
    peer reviewedAmong the diversity of plant diseases occurring in aquaponics, soil-borne pathogens, such as Fusarium spp., Phytophthora spp. and Pythium spp., are the most problematic due to their preference for humid/aquatic environment conditions. Phytophthora spp. and Pythium spp. which belong to the Oomycetes pseudo-fungi require special attention because of their mobile form of dispersion, the so-called zoospores that can move freely and actively in liquid water. In coupled aquaponics, curative methods are still limited because of the possible toxicity of pesticides and chemical agents for fish and beneficial bacteria (e.g. nitrifying bacteria of the biofilter). Furthermore, the development of biocontrol agents for aquaponic use is still at its beginning. Consequently, ways to control the initial infection and the progression of a disease are mainly based on preventive actions and water physical treatments. However, suppressive action (suppression) could happen in aquaponic environment considering recent papers and the suppressive activity already highlighted in hydroponics. In addition, aquaponic water contains organic matter that could promote establishment and growth of heterotrophic bacteria in the system or even improve plant growth and viability directly. With regards to organic hydroponics (i.e. use of organic fertilisation and organic plant media), these bacteria could act as antagonist agents or as plant defence elicitors to protect plants from diseases. In the future, research on the disease suppressive ability of the aquaponic biotope must be increased, as well as isolation, characterisation and formulation of microbial plant pathogen antagonists. Finally, a good knowledge in the rapid identification of pathogens, combined with control methods and diseases monitoring, as recommended in integrated plant pest management, is the key to an efficient control of plant diseases in aquaponics.Cos

    Characterization of Bacillus and Pseudomonas strains with suppressive traits isolated from tomato hydroponic-slow filtration unit.

    No full text
    Bacillus and Pseudomonas spp. are known to be involved in plant pathogenic fungi elimination during the slow filtration process used in tomato soilless cultures. We isolated 6–8 strains of both Bacillus and Pseudomonas from the top, middle, and bottom sections of filters and identified them after 16S rDNA sequencing. Four Pseudomonas strains were identified as Pseudomonas fulva, 5 as Pseudomonas plecoglossicida, and 12 as Pseudomonas putida. The use of specific oligonucleotide polymerase chain reaction primer sets designed from gyrB gene sequences additionally permitted the identification of 17 Bacillus cereus and 3 Bacillus thuringiensis strains. Ribotyping with EcoRI pointed out an important polymorphism within Bacillus and Pseudomonas strains. Molecular characterization did not reveal a correlation between the location of isolates within the filter (top, middle, or bottom) and bacterial identification or riboclusters. Functional aspects assessed by community-level physiological profiling showed marked phenotypic differences between Pseudomonas communities isolated from the top and bottom filter layers; differences were lower between Bacillus communities of different layers and far less noticeable between mixed communities of Bacillus and Pseudomonas. These strains were tested for several suppressive activities. Conversely to most Bacillus, the majority of Pseudomonas strains were auxin producers and promoted the growth of tomato plantlet roots. On the other hand, only Bacillus strains displayed antagonistic activities by inhibiting the growth of pathogenic fungi frequently detected in soilless cultures. Siderophores were produced by nearly all bacteria, but at higher amounts by Pseudomonas than Bacillus strains. The biocontrol agent potentiality of certain strains to optimize the slow filtration process and to promote the suppressive potential of nutrient solution is discussed

    Pathogenic and beneficial microorganisms in soilless cultures

    No full text
    Soilless cultures were originally developed to control soilborne diseases. Soilless cultures provide several advantages for growers such as greater production of crops, reduced energy consumption, better control of growth and independence of soil quality. However, diseases specific to hydroponics have been reported. For instance, zoospore-producing microorganisms such as Pythium and Phytophthora spp. are particularly well adapted to aquatic environments. Their growth in soilless substrates is favoured by the recirculation of the nutrient solution. These pathogenic microorganisms are usually controlled by disinfection methods but such methods are only effective as a preventive measure. Contrary to biofiltration, active treatments such as UV, heat and ozonisation have the disadvantage of eliminating not only the harmful microorganisms but also the beneficial indigenous microorganisms. Here, we review microbial populations that colonise ecological niches of hydroponic greenhouse systems. Three topics are discussed: (1) the general microflora; (2) the pathogenic microflora that are typical to hydroponic systems; and (3) the non-pathogenic and possibly beneficial microflora, and their use in the control of plant diseases in soilless greenhouse systems. Technical, economic and environmental concerns are forcing the adoption of new sustainable methods such as the use of microbial antagonists. Thus, increased attention is now focused on the role of natural microflora in suppressing certain diseases. Managing disease suppression in hydroponics represents a promising way of controlling pathogens. Three main strategies can be used: (1) increasing the level of suppressiveness by the addition of antagonistic microorganisms; (2) using a mix of microorganisms with complementary ecological traits and antagonistic abilities, combined with disinfection techniques; and (3) amending substrates to favour the development of a suppressive microflora. Increasing our knowledge on beneficial microflora, their ecology and treatments that influence their composition will help to commercialise new, ready-to-use substrates microbiologically optimised to protect plants in sustainable management systems

    Effects of in situ CO2 enrichment on Posidonia oceanica epiphytic community composition and mineralogy

    No full text
    Alterations in seagrass epiphytic communities are expected under future ocean acidification conditions, yet this hypothesis has been little tested in situ. A Free Ocean Carbon Dioxide Enrichment system was used to lower pH by a ~0.3 unit offset within a partially enclosed portion (1.7 m3) of a Posidonia oceanica meadow (11 m depth) between June 21 and November 3, 2014. Leaf epiphytic community composition (% cover) and bulk epiphytic mineralogy were compared every 4 weeks within three treatments, located in the same meadow: a pH-manipulated (experimental enclosure) and a control enclosure, as well as a nearby ambient area. Percent coverage of invertebrate calcifiers and crustose coralline algae (CCA) did not appear to be affected by the lowered pH. Furthermore, fleshy algae did not proliferate at lowered pH. Only Foraminifera, which covered less than 3% of leaf surfaces, declined in manner consistent with ocean acidification predictions. Bulk epiphytic magnesium carbonate composition was similar between treatments and percentage of magnesium appeared to increase from summer to autumn. CCA did not exhibit any visible skeleton dissolution or mineral alteration at lowered pH and carbonate saturation state. Negative impacts from ocean acidification on P. oceanica epiphytic communities were smaller than expected. Epiphytic calcifiers were possibly protected from the pH treatment due to host plant photosynthesis inside the enclosure where water flow is slowed. The more positive outcome than expected suggests that calcareous members of epiphytic communities may find refuge in some conditions and be resilient to environmentally relevant changes in carbonate chemistr

    Fungal Planet description sheets: 716–784

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetopsina eucalypti on Eucalyptus leaf litter, Colletotrichum cobbittiense from Cordyline stricta × C. australis hybrid, Cyanodermella banksiae on Banksia ericifolia subsp. macrantha, Discosia macrozamiae on Macrozamia miquelii, Elsinoë banksiigena on Banksia marginata, Elsinoë elaeocarpi on Elaeocarpus sp., Elsinoë leucopogonis on Leucopogon sp., Helminthosporium livistonae on Livistona australis, Idriellomyces eucalypti (incl. Idriellomyces gen. nov.) on Eucalyptus obliqua, Lareunionomyces eucalypti on Eucalyptus sp., Myrotheciomyces corymbiae (incl. Myrotheciomyces gen. nov., Myrotheciomycetaceae fam. nov.), Neolauriomyces eucalypti (incl. Neolauriomyces gen. nov., Neolauriomycetaceae fam. nov.) on Eucalyptus sp., Nullicamyces eucalypti (incl. Nullicamyces gen. nov.) on Eucalyptus leaf litter, Oidiodendron eucalypti on Eucalyptus maidenii, Paracladophialophora cyperacearum (incl. Paracladophialophoraceae fam. nov.) and Periconia cyperacearum on leaves of Cyperaceae, Porodiplodia livistonae (incl. Porodiplodia gen. nov., Porodiplodiaceae fam. nov.) on Livistona australis, Sporidesmium melaleucae (incl. Sporidesmiales ord. nov.) on Melaleuca sp., Teratosphaeria sieberi on Eucalyptus sieberi, Thecaphora australiensis in capsules of a variant of Oxalis exilis. Brazil, Aspergillus serratalhadensis from soil, Diaporthe pseudoinconspicua from Poincianella pyramidalis, Fomitiporella pertenuis on dead wood, Geastrum magnosporum on soil, Marquesius aquaticus (incl. Marquesius gen. nov.) from submerged decaying twig and leaves of unidentified plant, Mastigosporella pigmentata from leaves of Qualea parviflorae, Mucor souzae from soil, Mycocalia aquaphila on decaying wood from tidal detritus, Preussia citrullina as endophyte from leaves of Citrullus lanatus, Queiroziella brasiliensis (incl. Queiroziella gen. nov.) as epiphytic yeast on leaves of Portea leptantha, Quixadomyces cearensis (incl. Quixadomyces gen. nov.) on decaying bark, Xylophallus clavatus on rotten wood. Canada, Didymella cari on Carum carvi and Coriandrum sativum. Chile, Araucasphaeria foliorum (incl. Araucasphaeria gen. nov.) on Araucaria araucana, Aspergillus tumidus from soil, Lomentospora valparaisensis from soil. Colombia, Corynespora pseudocassiicola on Byrsonima sp., Eucalyptostroma eucalyptorum on Eucalyptus pellita, Neometulocladosporiella eucalypti (incl. Neometulocladosporiella gen. nov.) on Eucalyptus grandis × urophylla, Tracylla eucalypti (incl. Tracyllaceae fam. nov., Tracyllalales ord. nov.) on Eucalyptus urophylla. Cyprus, Gyromitra anthracobia (incl. Gyromitra subg. Pseudoverpa) on burned soil. Czech Republic, Lecanicillium restrictum from the surface of the wooden barrel, Lecanicillium testudineum from scales of Trachemys scripta elegans. Ecuador, Entoloma yanacolor and Saproamanita quitensis on soil. France, Lentithecium carbonneanum from submerged decorticated Populus branch. Hungary, Pleuromyces hungaricus (incl. Pleuromyces gen. nov.) from a large Fagus sylvatica log. Iran, Zymoseptoria crescenta on Aegilops triuncialis. Malaysia, Ochroconis musicola on Musa sp. Mexico, Cladosporium michoacanense from soil. New Zealand , Acrodontium metrosideri on Metrosideros excelsa, Polynema podocarpi on Podocarpus totara, Pseudoarthrographis phlogis (incl. Pseudoarthrographis gen. nov.) on Phlox subulata. Nigeria, Coprinopsis afrocinerea on soil. Pakistan, Russula mansehraensis on soil under Pinus roxburghii. Russia, Baorangia alexandri on soil in deciduous forests with Quercus mongolica. South Africa, Didymocyrtis brachylaenae on Brachylaena discolor. Spain, Alfaria dactylis from fruit of Phoenix dactylifera, Dothiora infuscans from a blackened wall, Exophiala nidicola from the nest of an unidentified bird, Matsushimaea monilioides from soil, Terfezia morenoi on soil. United Arab Emirates, Tirmania honrubiae on soil. USA, Arxotrichum wyomingense (incl. Arxotrichum gen. nov.) from soil, Hongkongmyces snookiorum from submerged detritus from a fresh water fen, Leratiomyces tesquorum from soil, Talaromyces tabacinus on leaves of Nicotiana tabacum. Vietnam, Afroboletus vietnamensis on soil in an evergreen tropical forest, Colletotrichum condaoense from Ipomoea pes-caprae. Morphological and culture characteristics along with DNA barcodes are provided
    corecore