609 research outputs found

    Contrasted sediment processes and morphological adjustments in three successive cutoff meanders of the Danube Delta

    No full text
    Since the 1980s intensive anthropogenic disturbances have affected the channel of the St. George branch, the southern distributary of the Danube River. The meander cutoff programme since 1984–1988 induced different hydrosedimentary impacts on the local distribution of river flow velocities, discharge, and sediment fluxes between the former meanders and the man-made canals (Ichim and Radoane, 1986; Popa, 1997; Panin, 2003). This paper selects three large cutoff meander reaches of the St. George branch (the Mahmudia, Dunavăƣ de Sus, and Dunavăƣ de Josmeanders noted here asM1,M2, andM3, respectively) as an example to analyse the human impact in the Danube River delta. The diversion of the flow induces strong modifications by acceleration of the fluxes through the artificial canals combined with dramatically enhanced deposition in the former meander where it was observed in two cases (M1 and M3) with slight modifications in M2. An exceptional flood that occurred in April 2006 offered a good opportunity for scanning different cross sections of the meander systems. Bathymetry, flow velocity, suspended-load concentration, and liquid and solid discharge data were acquired throughout several cross sections of both natural channels and artificial canals of the three cutoffs, using acoustic Doppler current profiler (ADCP) technology, in order to investigate the distribution of the flowand sediment and its impact on the hydrosedimentary processes in each channelized reach and adjacent former meander. Therefore, the results obtained during the 2006 flood were referred to a long-term evolution (1970–2006), analysed by GIS techniques

    Configuration mixing in 188^{188}Pb : band structure and electromagnetic properties

    Full text link
    In the present paper, we carry out a detailed analysis of the presence and mixing of various families of collective bands in 188^{188}Pb. Making use of the interacting boson model, we construct a particular intermediate basis that can be associated with the unperturbed bands used in more phenomenological studies. We use the E2 decay to construct a set of collective bands and discuss in detail the B(E2)-values. We also perform an analysis of these theoretical results (Q, B(E2)) to deduce an intrinsic quadrupole moment and the associated quadrupole deformation parameter, using an axially deformed rotor model.Comment: submitted to pr

    SPIRAL 2 injector diagnostics

    Get PDF
    International audienceThe future SPIRAL2 facility will be composed of a multi-beam driver accelerator (5 mA/40 MeV deuterons, 5 mA /14.5 MeV/u heavy ions) and a dedicated building for the production of radioactive ion beams (RIBs). RIBs will be accelerated by the existing cyclotron CIME for the post acceleration and sent to GANIL's experimental areas. The injector constituted by an ion source a deuteron/proton source a L.E.B.T. and a M.E.B.T. lines and a room temperature R.F.Q. will produces, transports and accelerates beams up to an energy of 0.75 MeV/u. An Intermediate Test Bench (B.T.I.) is being built to commission the SPIRAL2 injector through the first rebuncher of the M.E.B.T. line in a first step and the last rebuncher in a second step. The B.T.I. is designed to perform a wide variety of measurements and functions and to go more deeply in the understanding of the behaviour of diagnostics under high average intensity beam operations. A superconducting LINAC equipped with two types of cavity will allow reaching 20 MeV/u for deuterons beam. This paper describes injector diagnostic developments and gives information about the current status

    Orbital stability: analysis meets geometry

    Get PDF
    We present an introduction to the orbital stability of relative equilibria of Hamiltonian dynamical systems on (finite and infinite dimensional) Banach spaces. A convenient formulation of the theory of Hamiltonian dynamics with symmetry and the corresponding momentum maps is proposed that allows us to highlight the interplay between (symplectic) geometry and (functional) analysis in the proofs of orbital stability of relative equilibria via the so-called energy-momentum method. The theory is illustrated with examples from finite dimensional systems, as well as from Hamiltonian PDE's, such as solitons, standing and plane waves for the nonlinear Schr{\"o}dinger equation, for the wave equation, and for the Manakov system

    The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers

    Full text link
    The AMY experiment aims to measure the microwave bremsstrahlung radiation (MBR) emitted by air-showers secondary electrons accelerating in collisions with neutral molecules of the atmosphere. The measurements are performed using a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN National Laboratories. The goal of the AMY experiment is to measure in laboratory conditions the yield and the spectrum of the GHz emission in the frequency range between 1 and 20 GHz. The final purpose is to characterise the process to be used in a next generation detectors of ultra-high energy cosmic rays. A description of the experimental setup and the first results are presented.Comment: 3 pages -- EPS-HEP'13 European Physical Society Conference on High Energy Physics (July, 18-24, 2013) at Stockholm, Swede

    Intruder bands and configuration mixing in the lead isotopes

    Full text link
    A three-configuration mixing calculation is performed in the context of the interacting boson model with the aim to describe recently observed collective bands built on low-lying 0+0^+ states in neutron-deficient lead isotopes. The configurations that are included correspond to the regular, spherical states as well as two-particle two-hole and four-particle four-hole excitations across the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1 in this revised versio

    Advance in the conceptual design of the European DEMO magnet system

    Get PDF
    The European DEMO, i.e. the demonstration fusion power plant designed in the framework of the Roadmap to Fusion Electricity by the EUROfusion Consortium, is approaching the end of the pre-conceptual design phase, to be accomplished with a Gate Review in 2020, in which all DEMO subsystems will be reviewed by panels of independent experts. The latest 2018 DEMO baseline has major and minor radius of 9.1 m and 2.9 m, plasma current 17.9 MA, toroidal field on the plasma axis 5.2 T, and the peak field in the toroidal-field (TF) conductor 12.0 T. The 900 ton heavy TF coil is prepared in four lowerature-superconductor (LTS) variants, some of them differing slightly, other significantly, from the ITER TF coil design. Two variants of the CS coils are investigated - a purely LTS one resembling the ITER CS, and a hybrid coil, in which the innermost layers made of HTS allow the designers either to increase the magnetic flux, and thus the duration of the fusion pulse, or to reduce the outer radius of the CS coil. An issue presently investigated by mechanical analyzes is the fatigue load. Two variants of the poloidal field coils are being investigated. The magnet and conductor design studies are accompanied by the experimental tests on both LTS and HTS prototype samples, covering a broad range of DC and AC tests. Testing of quench behavior of the 15 kA HTS cables, with size and layout relevant for the fusion magnets and cooled by forced flow helium, is in preparation.</p
    • 

    corecore