438 research outputs found

    Inclusion Polymerization and Doping in Zeolite Channels. Polyaniline

    Get PDF
    Aniline has been polymerized in the three-dimensional channel system of zeolite Y. The monomer was diffused into zeolites with different levels of acidity from hexane solution. Subsequent admission of peroxydisulfate or iodate from aqueous solution yielded the intrazeolite polymers, as demonstrated by FT-IR, electronic absorption data and recovery of the included polymer. With S2O82-, the intrazeolite products are a function of the proton content of the zeolite. Polymer is only formed when a sufficient supply of protons is present in the zeolite host. When neutral iodate solution is used, no polymer is formed in NaY and acid zeolites, but at low pH aniline polymerizes in all zeolites. The open pore system of the zeolite host can be accessed by base such that the intrazeolite protonated polymer is transformed into the corresponding neutral polymer. The polymer chains encapsulated in zeolite hosts represent a new class of low- dimensional electronic materials

    Human–Black Bear Conflicts: A Review of Common Management Practices

    Get PDF
    The objective of this monograph is to provide wildlife professionals, who respond to human–bear conflicts, with an appraisal of the most common techniques used for mitigating conflicts as well as the benefits and challenges of each technique in a single document. Most human–black bear conflict occurs when people make anthropogenic foods like garbage, dog food, domestic poultry, or fruit trees available to bears. Bears change their behavior to take advantage of these resources and may damage property or cause public safety concerns in the process. Managers and the public need to understand the available tools to stop human–bear conflict and reduce effects on bear populations.https://digitalcommons.usu.edu/hwi_monographs/1002/thumbnail.jp

    Building zeolites from precrystallized units: nanoscale architecture

    Full text link
    This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2018, 57, 15330 15353, which has been published in final form at https://doi.org/10.1002/anie.201711422. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Since the early reports by Barrer in the 1940s on converting natural minerals into synthetic zeolites, the use of precrystallized zeolites as crucial inorganic directing agents to synthesize other crystalline zeolites with improved physicochemical properties has become a very important research field, allowing the design, particularly in recent years, of new industrial catalysts. This Review highlights how the presence of some crystalline fragments in the synthesis media, such as small secondary building units (SBUs) or layered substructures, not only favors the crystallization of other zeolites with similar SBUs or layers, but also permits control over important parameters affecting their catalytic activity (chemical composition, crystal size, or porosity, etc.). Recent advances in the preparation of 3D and 2D zeolites through seeding and zeolite-to-zeolite transformation processes will be discussed extensively in this Review, including their preparation in the presence or absence of organic structure-directing agents (OSDAs). The aim is to introduce general guidelines for more efficient approaches for target zeolites.This work has been supported by the Spanish Government (MINECO through "Severo Ochoa" (SEV-2016-0683) and MAT2015-71261-R), by the European Union through ERC-AdG-2014-671093 (SynCatMatch), and by the Fundacion Ramon Areces (through the "Life and Materials Science" program).Li, C.; Moliner Marin, M.; Corma Canós, A. (2018). Building zeolites from precrystallized units: nanoscale architecture. Angewandte Chemie International Edition. 57(47):15330-15353. https://doi.org/10.1002/anie.201711422S15330153535747Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014Čejka, J., Centi, G., Perez-Pariente, J., & Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 179(1), 2-15. doi:10.1016/j.cattod.2011.10.006http://www.iza-structure.org/databases/.Corma, A., & Davis, M. E. (2004). Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures. ChemPhysChem, 5(3), 304-313. doi:10.1002/cphc.200300997Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. I. Factors Affecting the Formation of Zeolite A. The Journal of Physical Chemistry, 70(4), 1047-1050. doi:10.1021/j100876a015Derouane, E. G., Determmerie, S., Gabelica, Z., & Blom, N. (1981). Synthesis and characterization of ZSM-5 type zeolites I. physico-chemical properties of precursors and intermediates. Applied Catalysis, 1(3-4), 201-224. doi:10.1016/0166-9834(81)80007-3Chang, C. D., & Bell, A. T. (1991). Studies on the mechanism of ZSM-5 formation. Catalysis Letters, 8(5-6), 305-316. doi:10.1007/bf00764192Burkett, S. L., & Davis, M. E. (1994). Mechanism of Structure Direction in the Synthesis of Si-ZSM-5: An Investigation by Intermolecular 1H-29Si CP MAS NMR. The Journal of Physical Chemistry, 98(17), 4647-4653. doi:10.1021/j100068a027Li, J., Corma, A., & Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews, 44(20), 7112-7127. doi:10.1039/c5cs00023hDavis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914uMoliner, M., Martínez, C., & Corma, A. (2015). Multipore Zeolites: Synthesis and Catalytic Applications. Angewandte Chemie International Edition, 54(12), 3560-3579. doi:10.1002/anie.201406344Moliner, M., Martínez, C., & Corma, A. (2015). Multiporige Zeolithe: Synthese und Anwendungen bei der Katalyse. Angewandte Chemie, 127(12), 3630-3649. doi:10.1002/ange.201406344Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121Barrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713Moliner, M., Rey, F., & Corma, A. (2013). Rationales Design von effizienten organischen strukturdirigierenden Reagentien für die Zeolithsynthese. Angewandte Chemie, 125(52), 14124-14134. doi:10.1002/ange.201304713Burton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2Dorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206oSimancas, R., Dari, D., Velamazan, N., Navarro, M. T., Cantin, A., Jorda, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302bCorma, A., Díaz-Cabañas, M. J., Rey, F., Nicolopoulus, S., & Boulahya, K. (2004). ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun., (12), 1356-1357. doi:10.1039/b406572gCorma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016Jiang, J., Yu, J., & Corma, A. (2010). Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen. Angewandte Chemie, 122(18), 3186-3212. doi:10.1002/ange.200904016Sano, T., Itakura, M., & Sadakane, M. (2013). High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 56(4), 183-197. doi:10.1627/jpi.56.183Goel, S., Zones, S. I., & Iglesia, E. (2015). Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents. Chemistry of Materials, 27(6), 2056-2066. doi:10.1021/cm504510fMartín, N., Moliner, M., & Corma, A. (2015). High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chemical Communications, 51(49), 9965-9968. doi:10.1039/c5cc02670aSonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621cD.Xie S. I.Zones C. M.Lew T. M.Davis WO2016/003504 2016.Jon, H., Ikawa, N., Oumi, Y., & Sano, T. (2008). An Insight into the Process Involved in Hydrothermal Conversion of FAU to *BEA Zeolite. Chemistry of Materials, 20(12), 4135-4141. doi:10.1021/cm703676yGoto, I., Itakura, M., Shibata, S., Honda, K., Ide, Y., Sadakane, M., & Sano, T. (2012). Transformation of LEV-type zeolite into less dense CHA-type zeolite. Microporous and Mesoporous Materials, 158, 117-122. doi:10.1016/j.micromeso.2012.03.032Goel, S., Zones, S. I., & Iglesia, E. (2014). Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. Journal of the American Chemical Society, 136(43), 15280-15290. doi:10.1021/ja507956mZones, S. I. (1991). Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide. Journal of the Chemical Society, Faraday Transactions, 87(22), 3709. doi:10.1039/ft9918703709Inoue, T., Itakura, M., Jon, H., Oumi, Y., Takahashi, A., Fujitani, T., & Sano, T. (2009). Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction. Microporous and Mesoporous Materials, 122(1-3), 149-154. doi:10.1016/j.micromeso.2009.02.027Itakura, M., Goto, I., Takahashi, A., Fujitani, T., Ide, Y., Sadakane, M., & Sano, T. (2011). Synthesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in the presence of seed crystals. Microporous and Mesoporous Materials, 144(1-3), 91-96. doi:10.1016/j.micromeso.2011.03.041Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200hInagaki, S., Tsuboi, Y., Nishita, Y., Syahylah, T., Wakihara, T., & Kubota, Y. (2013). Rapid Synthesis of an Aluminum-Rich MSE-Type Zeolite by the Hydrothermal Conversion of an FAU-Type Zeolite. Chemistry - A European Journal, 19(24), 7780-7786. doi:10.1002/chem.201300125Zones, S. I., & Nakagawa, Y. (1995). Use of modified zeolites as reagents influencing nucleation in zeolite synthesis. Studies in Surface Science and Catalysis, 45-52. doi:10.1016/s0167-2991(06)81871-9Fan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie International Edition, 43(2), 236-240. doi:10.1002/anie.200352723Fan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie, 116(2), 238-242. doi:10.1002/ange.200352723De Baerdemaeker, T., Feyen, M., Vanbergen, T., Müller, U., Yilmaz, B., Xiao, F.-S., … Gies, H. (2014). From Layered Zeolite Precursors to Zeolites with a Three-Dimensional Porosity: Textural and Structural Modifications through Alkaline Treatment. Chemistry of Materials, 27(1), 316-326. doi:10.1021/cm504014dIyoki, K., Itabashi, K., & Okubo, T. (2014). Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Microporous and Mesoporous Materials, 189, 22-30. doi:10.1016/j.micromeso.2013.08.008Honda, K., Itakura, M., Matsuura, Y., Onda, A., Ide, Y., Sadakane, M., & Sano, T. (2013). Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 13(4), 3020-3026. doi:10.1166/jnn.2013.7356Barrer, R. M. (1948). 33. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. Journal of the Chemical Society (Resumed), 127. doi:10.1039/jr9480000127Barrer, R. M., & Riley, D. W. (1948). 34. Sorptive and molecular-sieve properties of a new zeolitic mineral. Journal of the Chemical Society (Resumed), 133. doi:10.1039/jr9480000133Barrer, R. M., Cole, J. F., & Sticher, H. (1968). Chemistry of soil minerals. Part V. Low temperature hydrothermal transformations of kaolinite. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 2475. doi:10.1039/j19680002475Subotić, B., Škrtić, D., Šmit, I., & Sekovanić, L. (1980). Transformation of zeolite A into hydroxysodalite. Journal of Crystal Growth, 50(2), 498-508. doi:10.1016/0022-0248(80)90099-8Subotić, B., & Sekovanić, L. (1986). Transformation of zeolite A into hydroxysodalite. Journal of Crystal Growth, 75(3), 561-572. doi:10.1016/0022-0248(86)90102-8Subotić, B., Šmit, I., Madžija, O., & Sekovanić, L. (1982). Kinetic study of the transformation of zeolite A into zeolite P. Zeolites, 2(2), 135-142. doi:10.1016/s0144-2449(82)80015-8Khodabandeh, S., & Davis, M. E. (1997). Synthesis of CIT-3: a calcium aluminosilicate with the heulandite topology. Microporous Materials, 9(3-4), 149-160. doi:10.1016/s0927-6513(96)00098-3Khodabandeh, S., Lee, G., & Davis, M. E. (1997). CIT-4: The first synthetic analogue of brewsterite. Microporous Materials, 11(1-2), 87-95. doi:10.1016/s0927-6513(97)00036-9Yashiki, A., Honda, K., Fujimoto, A., Shibata, S., Ide, Y., Sadakane, M., & Sano, T. (2011). Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals. Journal of Crystal Growth, 325(1), 96-100. doi:10.1016/j.jcrysgro.2011.04.040Honda, K., Yashiki, A., Itakura, M., Ide, Y., Sadakane, M., & Sano, T. (2011). Influence of seeding on FAU–∗BEA interzeolite conversions. Microporous and Mesoporous Materials, 142(1), 161-167. doi:10.1016/j.micromeso.2010.11.031Kerr, G. T. (1968). Chemistry of crystalline aluminosilicates. IV. Factors affecting the formation of zeolites X and B. The Journal of Physical Chemistry, 72(4), 1385-1386. doi:10.1021/j100850a056Xie, B., Song, J., Ren, L., Ji, Y., Li, J., & Xiao, F.-S. (2008). Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite. Chemistry of Materials, 20(14), 4533-4535. doi:10.1021/cm801167eMajano, G., Delmotte, L., Valtchev, V., & Mintova, S. (2009). Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template. Chemistry of Materials, 21(18), 4184-4191. doi:10.1021/cm900462uKamimura, Y., Chaikittisilp, W., Itabashi, K., Shimojima, A., & Okubo, T. (2010). Critical Factors in the Seed-Assisted Synthesis of Zeolite Beta and «Green Beta» from OSDA-Free Na+-Aluminosilicate Gels. Chemistry - An Asian Journal, 5(10), 2182-2191. doi:10.1002/asia.201000234Xie, B., Zhang, H., Yang, C., Liu, S., Ren, L., Zhang, L., … Xiao, F.-S. (2011). Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chemical Communications, 47(13), 3945. doi:10.1039/c0cc05414cKamimura, Y., Tanahashi, S., Itabashi, K., Sugawara, A., Wakihara, T., Shimojima, A., & Okubo, T. (2010). Crystallization Behavior of Zeolite Beta in OSDA-Free, Seed-Assisted Synthesis. The Journal of Physical Chemistry C, 115(3), 744-750. doi:10.1021/jp1098975Iyoki, K., Kamimura, Y., Itabashi, K., Shimojima, A., & Okubo, T. (2010). Synthesis of MTW-type Zeolites in the Absence of Organic Structure-directing Agent. Chemistry Letters, 39(7), 730-731. doi:10.1246/cl.2010.730Majano, G., Darwiche, A., Mintova, S., & Valtchev, V. (2009). Seed-Induced Crystallization of Nanosized Na-ZSM-5 Crystals. Industrial & Engineering Chemistry Research, 48(15), 7084-7091. doi:10.1021/ie8017252Zhang, H., Guo, Q., Ren, L., Yang, C., Zhu, L., Meng, X., … Xiao, F.-S. (2011). Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. Journal of Materials Chemistry, 21(26), 9494. doi:10.1039/c1jm11786fYokoi, T., Yoshioka, M., Imai, H., & Tatsumi, T. (2009). Diversification of RTH-Type Zeolite and Its Catalytic Application. Angewandte Chemie International Edition, 48(52), 9884-9887. doi:10.1002/anie.200905214Yokoi, T., Yoshioka, M., Imai, H., & Tatsumi, T. (2009). Diversification of RTH-Type Zeolite and Its Catalytic Application. Angewandte Chemie, 121(52), 10068-10071. doi:10.1002/ange.200905214Itabashi, K., Kamimura, Y., Iyoki, K., Shimojima, A., & Okubo, T. (2012). A Working Hypothesis for Broadening Framework Types of Zeolites in Seed-Assisted Synthesis without Organic Structure-Directing Agent. Journal of the American Chemical Society, 134(28), 11542-11549. doi:10.1021/ja3022335Zones, S. I. (1990). Direct hydrothermal conversion of cubic P zeolite to organozeolite SSZ-13. Journal of the Chemical Society, Faraday Transactions, 86(20), 3467. doi:10.1039/ft9908603467Chan, I. Y., & Zones, S. I. (1989). Analytical electron microscopy (AEM) of cubic P zeolite to Nu-3 zeolite transformation. Zeolites, 9(1), 3-11. doi:10.1016/0144-2449(89)90002-xJon, H., Nakahata, K., Lu, B., Oumi, Y., & Sano, T. (2006). Hydrothermal conversion of FAU into ∗BEA zeolites. Microporous and Mesoporous Materials, 96(1-3), 72-78. doi:10.1016/j.micromeso.2006.06.024Jon, H., Sasaki, H., Inoue, T., Itakura, M., Takahashi, S., Oumi, Y., & Sano, T. (2008). Effects of structure-directing agents on hydrothermal conversion of FAU type zeolite. Studies in Surface Science and Catalysis, 229-232. doi:10.1016/s0167-2991(08)80184-xJon, H., Takahashi, S., Sasaki, H., Oumi, Y., & Sano, T. (2008). Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system. Microporous and Mesoporous Materials, 113(1-3), 56-63. doi:10.1016/j.micromeso.2007.11.003Roth, W. J., Nachtigall, P., Morris, R. E., & Čejka, J. (2014). Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 114(9), 4807-4837. doi:10.1021/cr400600fRoth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT ’95, 301-308. doi:10.1016/s0167-2991(06)81236-xCorma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie International Edition, 39(8), 1499-1501. doi:10.1002/(sici)1521-3773(20000417)39:83.0.co;2-0Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie, 112(8), 1559-1561. doi:10.1002/(sici)1521-3757(20000417)112:83.0.co;2-uCorma, A., Fornés, V., & Díaz, U. (2001). Chemical Communications, (24), 2642-2643. doi:10.1039/b108777kRoth, W. J., & Čejka, J. (2011). Two-dimensional zeolites: dream or reality? Catalysis Science & Technology, 1(1), 43. doi:10.1039/c0cy00027bC. T.Kresge W. J.Roth U.S. Patent 5266541 1993.Eliášová, P., Opanasenko, M., Wheatley, P. S., Shamzhy, M., Mazur, M., Nachtigall, P., … Čejka, J. (2015). The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 44(20), 7177-7206. doi:10.1039/c5cs00045aRoth, W. J., Nachtigall, P., Morris, R. E., Wheatley, P. S., Seymour, V. R., Ashbrook, S. E., … Čejka, J. (2013). A family of zeolites with controlled pore size prepared using a top-down method. Nature Chemistry, 5(7), 628-633. doi:10.1038/nchem.1662Verheyen, E., Joos, L., Van Havenbergh, K., Breynaert, E., Kasian, N., Gobechiya, E., … Martens, J. A. (2012). Design of zeolite by inverse sigma transformation. Nature Materials, 11(12), 1059-1064. doi:10.1038/nmat3455Khodabandeh, S., & Davis, M. E. (1997). Zeolites P1 and L as precursors for the preparation of alkaline-earth zeolites. Microporous Materials, 12(4-6), 347-359. doi:10.1016/s0927-6513(97)00083-7Khodabandeh, S., & Davis, M. E. (1997). Alteration of perlite to calcium zeolites. Microporous Materials, 9(3-4), 161-172. doi:10.1016/s0927-6513(96)00100-9Van Tendeloo, L., Gobechiya, E., Breynaert, E., Martens, J. A., & Kirschhock, C. E. A. (2013). Alkaline cations directing the transformation of FAU zeolites into five different framework types. Chemical Communications, 49(100), 11737. doi:10.1039/c3cc47292bNedyalkova, R., Montreuil, C., Lambert, C., & Olsson, L. (2013). Interzeolite Conversion of FAU Type Zeolite into CHA and its Application in NH3-SCR. Topics in Catalysis, 56(9-10), 550-557. doi:10.1007/s11244-013-0015-4Ji, Y., Deimund, M. A., Bhawe, Y., & Davis, M. E. (2015). Organic-Free Synthesis of CHA-Type Zeolite Catalysts for the Methanol-to-Olefins Reaction. ACS Catalysis, 5(7), 4456-4465. doi:10.1021/acscatal.5b00404D.Xie WO2016/122724 2016.Daniels, R. H., Kerr, G. T., & Rollmann, L. D. (1978). Cationic polymers as templates in zeolite crystallization. Journal of the American Chemical Society, 100(10), 3097-3100. doi:10.1021/ja00478a024Honda, K., Yashiki, A., Sadakane, M., & Sano, T. (2014). Hydrothermal conversion of FAU and ∗BEA-type zeolites into MAZ-type zeolites in the presence of non-calcined seed crystals. Microporous and Mesoporous Materials, 196, 254-260. doi:10.1016/j.micromeso.2014.05.028De Baerdemaeker, T., Yilmaz, B., Müller, U., Feyen, M., Xiao, F.-S., Zhang, W., … De Vos, D. (2013). Catalytic applications of OSDA-free Beta zeolite. Journal of Catalysis, 308, 73-81. doi:10.1016/j.jcat.2013.05.025Kamimura, Y., Itabashi, K., & Okubo, T. (2012). Seed-assisted, OSDA-free synthesis of MTW-type zeolite and «Green MTW» from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 147(1), 149-156. doi:10.1016/j.micromeso.2011.05.038Kamimura, Y., Itabashi, K., Kon, Y., Endo, A., & Okubo, T. (2017). Seed-Assisted Synthesis of MWW-Type Zeolite with Organic Structure-Directing Agent-Free Na-Aluminosilicate Gel System. Chemistry -

    Washington Legislation—1941 (Continued)

    Get PDF
    The survey of selected important enactments of the Twenty-Seventh Legislature of the State of Washington, first installment of which appeared in the April issue of the REVww, is continued and concluded in this issue

    Human development and climate affect hibernation in a large carnivore with implications for human–carnivore conflicts

    Get PDF
    1. Expanding human development and climate change are dramatically altering habitat conditions for wildlife. While the initial response of wildlife to changing environmental conditions is typically a shift in behavior, little is known about the effects of these stressors on hibernation behavior, an important life-history trait that can subsequently affect animal physiology, demography, interspecific interactions and human-wildlife interactions. Given future trajectories of land use and climate change, it is important that wildlife professionals understand how animals that hibernate are adapting to altered landscape conditions so that management activities can be appropriately tailored. 2. We investigated the influence of human development and weather on hibernation in black bears (Ursus americanus), a species of high management concern, whose behavior is strongly tied to natural food availability, anthropogenic foods around development and variation in annual weather conditions. Using GPS collar data from 131 den events of adult female bears (n = 51), we employed fine-scale, animal-specific habitat information to evaluate the relative and cumulative influence of natural food availability, anthropogenic food and weather on the start, duration and end of hibernation. 3. We found that weather and food availability (both natural and human) additively shaped black bear hibernation behavior. Of the habitat variables we examined, warmer temperatures were most strongly associated with denning chronology, reducing the duration of hibernation and expediting emergence in the spring. Bears appeared to respond to natural and anthropogenic foods similarly, as more natural foods, and greater use of human foods around development, both postponed hibernation in the fall and decreased its duration. 4. Synthesis and applications. Warmer temperatures and use of anthropogenic food subsides additively reduced black bear hibernation, suggesting that future changes in climate and land use may further alter bear behavior and increase the length of their active season. We speculate that longer active periods for bears will result in subsequent increases in human–bear conflicts and human-caused bear mortalities. These metrics are commonly used by wildlife agencies to index trends in bear populations, but have the potential to be misleading when bear behavior dynamically adapts to changing environmental conditions, and should be substituted with reliable demographic methods

    Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules

    Get PDF
    In attempts to improve the metabolic efficiency in closed photosynthetic reactors, availability of light and CO2 are often considered as limiting factors, as they are difficult to control in a culture. The carbon source is usually provided via bubbling of CO2- enriched air into the culture medium; however, this procedure is not particularly effective in terms of mass transfer. Besides, it leads to considerable waste of that gas to the open atmosphere, which adds to operation costs. Increase in the interfacial area of contact available for gas exchange via use of membranes might be a useful alternative; microporous membranes, in hollow-fiber form, were tested accordingly. Two hollow-fiber modules, different in both hydrophilicity and outer surface area, were tested and duly compared, in terms of mass transfer, versus traditional plain bubbling. Overall volumetric coefficients (KLa) for CO2 transfer were 1.48 10-2 min-1 for the hydrophobic membrane, 1.33 10-2 min-1 for the hydrophilic membrane, and 7.0 10-3 min-1 for plain bubbling. A model microalga, viz. Nannochloropsis sp., was cultivated using the two aforementioned membrane systems and plain bubbling. The produced data showed slight (but hardly significant) increases in biomass productivity when the hollow-fiber devices were used. However, hollow-fiber modules allow recirculation of unused CO2, thus reducing feedstock costs. Furthermore, such indirect way of supplying CO2 offers the additional possibility for use of lower gas pressures, as no need to counterbalance hydrostatic heads exists

    Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination

    Get PDF
    In this study, continuous zirconium(IV)-based metal-organic framework (Zr-MOF) membranes were prepared. The pure-phase Zr-MOF (i.e., UiO-66) polycrystalline membranes were fabricated on alumina hollow fibers using an in situ solvothermal synthesis method. Single-gas permeation and ion rejection tests were carried out to confirm membrane integrity and functionality. The membrane exhibited excellent multivalent ion rejection (e.g., 86.3% for Ca2+, 98.0% for Mg2+, and 99.3% for Al3+) on the basis of size exclusion with moderate permeance (0.14 L m-2 h-1 bar-1) and good permeability (0.28 L m-2 h-1 bar-1 μm). Benefiting from the exceptional chemical stability of the UiO-66 material, no degradation of membrane performance was observed for various tests up to 170 h toward a wide range of saline solutions. The high separation performance combined with its outstanding water stability suggests the developed UiO-66 membrane as a promising candidate for water desalination
    • …
    corecore