20 research outputs found

    A randomized controlled trial of homeopathic treatment of weaned piglets in a commercial swine herd

    No full text
    Aim: To evaluate the zootechnic performance and occurrence of diarrhea in piglets in the week post-weaning comparing supplementation with sucrose saline which contained or did not contain added homeopathic medicine. Method. Animals were randomly divided into three groups of 24 piglets each. The control group did not receive any treatment. Another group received sucrose saline, and the third group received sucrose saline with homeopathic medicine added, in the period of zero to seven days post-weaning. The homeopathic treatment consisted of Echinacea angustifolia, Avena sativa, Ignatia amara, Calcarea carbonica, all 6cH. Piglets were weighed daily for weight gain or loss, and observed for diarrhea and feed intake. Results: Animals receiving sucrose saline alone and sucrose saline with homeopathy had less weight loss than control (p = 0.017, p = 0.0001 respectively). There was no statistical difference in relation to overall incidence of diarrhea or food consumption. These data suggest that the supplementation with sucrose saline with added homeopathic medicine in the first seven days post-weaning may be an useful option to reduce weight loss in weaned piglets. Homeopathy (2008) 97, 202-205

    Gastroprotective Mechanisms Of The Chloroform And Ethyl Acetate Phases Of Praxelis Clematidea (griseb.) R.m.king & H.robinson (asteraceae)

    No full text
    Flavonoid-rich Praxelis clematidea (Griseb.) R.M.King & H.Robinson (Asteraceae) is a native plant of South America. This study evaluates the gastroprotective activity and possible mechanisms for both the chloroform (CHCl3P) and ethyl acetate phases (AcOEtP) obtained from aerial parts of the plant. The activity was investigated using acute models of gastric ulcer. Gastric secretion biochemical parameters were determined after pylorus ligature. The participation of cytoprotective factors such as mucus, nitric oxide (NO), sulfhydryl (SH) groups, prostaglandin E2 (PGE 2), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), reduction of lipid peroxidation (malondialdehyde level), and polymorphonuclear infiltration (myeloperoxidase activity), was also investigated. CHCl3P (125, 250, and 500 mg/kg) and AcOEtP (62.5, 125, and 250 mg/kg) showed significant gastroprotective activity, reducing the ulcerative index by 75, 83, 88 % and 66, 66, 81 % for ethanol; 67, 67, 56 % and 56, 53, 58 % for a non-steroidal anti-inflammatory drug (NSAID); and 74, 58, 59 % and 64, 65, 61 % for stress-induced gastric ulcer, respectively. CHCl3P (125 mg/kg) and AcOEtP (62.5 mg/kg) significantly reduced the ulcerative area by 78 and 83 %, respectively, for the ischemia-reperfusion model. They also did not alter the biochemical parameters of gastric secretion, the GSH level or the activities of SOD, GPx or GR. They increased the quantity of gastric mucus, not dependent on NO, yet dependent on SH groups, and maintained PGE2 levels. The P. clematidea phases demonstrated gastroprotective activity related to cytoprotective factors. © 2012 The Japanese Society of Pharmacognosy and Springer.673480491Milani, S., Calabro, A., Role of growth factors and their receptors in gastric ulcer healing (2001) Microsc Res Tech, 53, pp. 360-371. , 11376497 10.1002/jemt.1104 1:CAS:528:DC%2BD3MXks1Kgs7c%3DBandyopadhyay, D., Biswas, K., Bhattacharyya, M., Reiter, R.J., Banerjee, R.K., Gastric toxicity and mucosal ulceration induced by oxygen-derived reactive species: Protection by melatonin (2001) Curr Mol Med, 1, pp. 501-513. , 11899094 10.2174/1566524013363483 1:CAS:528:DC%2BD3MXmsVOgtL8%3DChan, F.K.L., Leung, W.K., Peptic-ulcer disease (2002) Lancet, 360, pp. 933-941. , 12354485 10.1016/S0140-6736(02)11030-0Brozozowski, T., Experimental production of peptic ulcer, gastric damage and cancer models and their use in pathophysiological studies and pharmacological treatment - Polish achievements (2003) J Physiol Pharmacol, 54, pp. 99-126Yuan, Y., Padol, I.T., Hunt, R.H., Peptic ulcer disease today (2006) Nat Clin Pract Gastroenterol Hepatol, 3, pp. 80-89. , 16456574 10.1038/ncpgasthep0393 1:CAS:528:DC%2BD28XhvF2rs78%3DLipof, T., Shapiro, D., Kozol, R.A., Surgical perspectives in peptic ulcer disease and gastritis (2006) World J Gastroenterol, 12, pp. 3248-3252. , 16718847Alper, J.A., Ulcers as an infectious disease (1993) Science, 260, pp. 159-160. , 8469968 10.1126/science.8469968 1:STN:280:DyaK3s3islSitA%3D%3DSandes, A.R.R., Di Blasi, G., Biodiversidade e diversidade química e genética (2000) Biotecnologia Cienc Desenvolv, 13, pp. 28-32Sousa, F.O., (2007) Asteraceae No Parque Estadual da Ilha Do Cardoso, Cananéia, SP, , Thesis to Instituto de Botânica da Secretaria do Meio Ambiente São PauloPollock, S., Holland, A., Smith, W., (2004) New Alien Weed for Queensland Praxelis, , Queensland Herbarium Alert Sheet, Environmental Protection AgencyWang, Z.H., Christie, P., Chen, Q.B., Liu, X.X., Xie, L.L., Bai, C.J., Li, X.L., Allelopathic potential and chemical constituents of volatile oil from Praxelis clematidea (2006) Allelopathy J, 18, pp. 225-235. , 1:CAS:528:DC%2BD2sXhtFGltr%2FKCorlett, R.T., Shaw, J.C., Praxelis clematidea: Yesterday South America, today Hong Kong, tomorrow the world? (1995) Mem Hong Kong Nat Hist Soc, 20, pp. 235-236Noumi, E., Dibakto, T.W., Medicinal plants used for peptic ulcer in the Bangangte region, Western Cameroon (2000) Fitoterapia, 71, pp. 406-412. , 10925012 10.1016/S0367-326X(00)00144-1 1:STN:280:DC%2BD3MzltlSqtw%3D%3DBohlmann, F., Wegner, P., Jakupovic, J., King, R.M., Structure and synthesis of the methyl ester of N-(acetoxy) jasmonoylphenylalanine from Praxelis clematidea (1984) Tetrahedron, 40, pp. 2537-2540. , 10.1016/S0040-4020(01)83506-7 1:CAS:528:DyaL2cXlsVOrs7s%3DMaia, G.L.A., Falcão-Silva, V.S., Aquino, P.G.V., Araújo- Júnior, J.X., Tavares, J.F., Silva, M.S., Rodrigues, L.C., Barbosa-Filho, J.M., Flavonoids from Praxelis clematidea R.M. King and H. Robinson modulate bacterial drug resistance (2011) Molecules, 16, pp. 4828-4835. , 21666549 10.3390/molecules16064828 1:CAS:528:DC%2BC3MXnvVSjsbg%3DAlmeida, J., Silva, M.S., Cunha, E.V.L., Athayde-Filho, P.F., Diniz, M., Silva, M.G., Takemura, O.S., Barbosa-Filho, J.M., Chemical constituents and analgesic activity of Conocliniopsis prasiifolia (2006) Pharm Biol, 44, pp. 76-78. , 10.1080/13880200600582252Agrawal, P.K., (1989) Carbon-13 NMR of Flavonoids, , Elsevier New YorkMiddleton, E.J., Kandaswami, C., Theoharides, T.C., The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer (2000) Pharmacol Rev, 52, pp. 673-751. , 11121513 1:CAS:528:DC%2BD3MXislWktw%3D%3DMorimoto, Y., Shimohara, K., Oshima, S., Sukamoto, T., Effects of the new antiulcer agent KB-5492 on experimental gastric mucosal lesions and gastric mucosal defensive factors, as compared to those of terpenone and cimetidine (1991) Jpn J Pharmacol, 57, pp. 495-505. , 1803065 10.1254/jjp.57.495 1:CAS:528:DyaK38XpvFWhug%3D%3DSzelenyi, I., Thiemer, K., Distention ulcer as a model for testing of drugs for ulcerogenic side effects (1978) Arch Toxicol, 41, pp. 99-105. , 718423 10.1007/BF00351774 1:STN:280:DyaE1M%2FmtFChug%3D%3DPuscas, I., Puscas, C., Coltau, M., Pasça, R., Torres, J., Márquez, M., Herrero, E., Ortiz, J.A., Comparative study of the safety and efficacy of ebrotidine versus ranitidine and placebo in the prevention of piroxicam-induced gastroduodenal lesions (1997) Arzneimittelforschung, 47, pp. 568-572. , 9205767 1:CAS:528:DyaK2sXjvVyqsrY%3DSenay, S.E., Levine, R.J., Synergism between cold and restraint for rapid production of stress ulcer in rats (1967) Proc Soc Exp Biol Med, 124, pp. 1221-1223. , 6024838 1:STN:280:DyaF2s7ktVSjtA%3D%3DUeda, S., Yoshikawa, T., Takahashi, S., Ichikawa, H., Yasuda, M., Oyamada, H., Tanigawa, T., Kondo, M., Role of free radicals and lipid peroxidation in gastric mucosal injury induced by ischemia-reperfusion in rats (1989) Scand J Gastroenterol, 162, pp. 55-58. , 10.3109/00365528909091124 1:STN:280:DyaK3c%2FosVCiug%3D%3DAnderson, M., Determination of glutathione disulfide in biological samples (1985) Methods Enzymmol, 113, pp. 548-555. , 10.1016/S0076-6879(85)13073-9 1:CAS:528:DyaL28XmsFenuw%3D%3DWinterbourn, C.C., Hawkins, R.E., Brian, M., Carrel, R.W., The stimulation of red cell superoxide dismutase activity (1995) J Lab Clin Med, 85, pp. 337-341Yoshikawa, T., Naito, Y., Kishi, A., Tomii, T., Kaneko, T., Iinuma, S., Ichikawa, H., Kondo, M., Role of active oxygen, lipid peroxidation, and antioxidants in the pathogenesis of gastric mucosal injury induced by indomethacin in rats (1993) Gut, 34, pp. 732-737. , 8314503 10.1136/gut.34.6.732 1:STN:280:DyaK3szgtVeqsw%3D%3DCarlberg, I., Mannervik, B., Glutathione reductase (1985) Methods Enzymol, 113, pp. 484-490. , 3003504 10.1016/S0076-6879(85)13062-4 1:CAS:528:DyaL28XkslCqsQ%3D%3DOhkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Anal Biochem, 95, pp. 351-358. , 36810 10.1016/0003-2697(79)90738-3 1:CAS:528:DyaE1MXksFaisbk%3DKrawisz, J.E., Sharon, P., Stenson, W.F., Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in the rat and hamster model (1984) Gastroenterology, 87, pp. 1344-1350. , 6092199 1:CAS:528:DyaL2MXktVymShay, H., Komarov, S.A., Fels, S.S., Meranze, D., Gruenstein, M., Siplet, H., A simple method for the uniform production of gastric ulceration in rat (1945) Gastroenterology, 5, pp. 43-61Corne, S.J., Morriessay, S.M., Woods, R.J., A method for the quantitative estimation of gastric barrier mucus (1974) J Physiol, 242, pp. 116-117Curtis, G.H., Macnaughton, W.K., Gall, D.G., Wallace, J.L., Intraluminal pH modulates gastric prostaglandin synthesis (1995) Can J Physiol Pharmacol, 73, pp. 130-134. , 7600443 10.1139/y95-018 1:CAS:528:DyaK2MXkslOmtL8%3DSikiric, P., Seiwerth, S., Grabarevi, E., Ruman, R., Petek, M., Jagi, V., Turkovi, B., Marovi, A., The influence of a novel pentadecapeptide, BPC 157, on NG-nitro-l-arginine methylester and l-arginine effect on stomach mucosa integrity and blood pressure (1997) Eur J Pharmacol, 332, pp. 23-33. , 9298922 10.1016/S0014-2999(97)01033-9Matsuda, H., Li, Y., Yoshikawa, M., Gastroprotections of escins Ia, Ib, IIa, and IIb on ethanol-induced gastric mucosal lesions in rats (1999) Eur J Pharmacol, 373, pp. 63-70. , 10408252 10.1016/S0014-2999(99)00249-6 1:CAS:528:DyaK1MXjvFCitLk%3DHirschowitz, B.I., Keeling, D., Lewin, M., Okabe, S., Parsons, M., Sewing, K., Wallmark, B., Sachs, G., Pharmacological aspects of acid secretion (1995) Dig Dis Sci, 40, pp. 3s-23s. , 7859583 10.1007/BF02214869 1:CAS:528:DyaK2MXkslCqsr8%3DDembieska-Kiec, A., Pallapies, D., Simmet, T., Peskar, B.M., Peskar, B.A., Effect of carbenoxolone on the biological activity of nitric oxide: Relation to gastroprotection (1991) Br J Pharmacol, 104, pp. 811-816. , 10.1111/j.1476-5381.1991.tb12511.xElisabetsky, E., Sociopolitical, economical and ethical issues in medicinal plant research (1991) J Ethnopharmacol, 32, pp. 235-239. , 1881163 10.1016/0378-8741(91)90124-V 1:STN:280:DyaK3MzltVyisw%3D%3DSzabo, S., Trier, J.S., Frankel, P., Sulfhydryl compounds may mediate gastric cytoprotection (1981) Science, 214, pp. 200-202. , 7280691 10.1126/science.7280691 1:CAS:528:DyaL3MXlvVaju7g%3DHirokawa, M., Miura, S., Yoshida, H., Kurose, I., Shigematsu, T., Hokari, R., Higuchi, H., Ishii, H., Oxidative stress and mitochondrial damage precedes gastric mucosal cell death induced by ethanol administration (1998) Alcohol Clin Exp Res, 22, pp. 111S-114S. , 9622385 10.1097/00000374-199803001-00007 1:CAS:528:DyaK1cXjslaju74%3DKvietys, P.R., Twohig, B., Danzell, J., Specian, R.D., Ethanol-induced injury to the rat gastric mucosa. Role of neutrophils and xanthine oxidase-derived radicals (1990) Gastroenterology, 98, pp. 909-920. , 2311875 10.1016/0016-5085(90)90015-S 1:CAS:528:DyaK3cXitFags7c%3DOates, P.J., Hakkinen, J.P., Studies on the mechanism of ethanol-induced gastric damage in rats (1988) Gastroenterology, 94, pp. 10-21. , 3335281 1:CAS:528:DyaL1cXltFSqsA%3D%3DKonturek, S.J., Konturek, P.C., Brzozowski, T., Prostaglandins and ulcer healing (2005) J Physiol Pharmacol, 56, pp. 5-31Dhabhar, F.S., Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology (2009) Neuroimmunomodulation, 16, pp. 300-317. , 19571591 10.1159/000216188 1:CAS:528:DC%2BD1MXnvFKjtb0%3DDugan, L.L., Choi, D.W., Excitotoxicity, free radicals, and cell membrane changes (1994) Ann Neurol, 35, pp. 17-S21. , 8185290 10.1002/ana.410350707 1:CAS:528:DyaK2cXltVGgsr8%3DPaller, M.S., The cell biology of reperfusion injury in the kidney (1994) J Invest Med, 42, pp. 632-639. , 1:STN:280:DyaK28%2FksF2ksQ%3D%3DValko, M., Rhodes, C.J., Moncol, J., Izakovic, M., Mazur, M., Free radicals, metals and antioxidants in oxidative stress-induced câncer (2006) Chem Biol Interact, 160, pp. 1-40. , 16430879 10.1016/j.cbi.2005.12.009 1:CAS:528:DC%2BD28XhsF2hsrY%3DMojzis, J., Hvisčová, K., Germanová, D., Bukovičová, D., Mirossay, L., Protective effect of quercetin on ischemia/reperfusion induced gastric mucosal injury in rats (2001) Physiol Res, 50, pp. 501-506. , 11702854 1:CAS:528:DC%2BD38Xislensw%3D%3DSchroeter, H., Boyd, C., Spencer, J.P.E., Williams, R.J., Cadenas, E., Rice-Evans, C., MAPK signaling in neurodegeneration: Influences of flavonoids and of nitric oxide (2002) Neurobiology, 23, pp. 861-880. , 1:CAS:528:DC%2BD38XotVChsrw%3DGla, M., Amf, O., Silva Filho, R.N., Vco, C., Tavares, J.F., Assis, T.S., Barbosa Filho, J.M., (2010) Teor de Fenólicos Totais e Capacidade Antioxidante Do Extrato, das Fases e de Flavonóides de Praxelis Clematidea - XXI Simpósio de Plantas Medicinais Do Brasil, , João Pessoa, BrazilDeoda, R.S., Kumar, D., Bhujbal, S.S., Gastroprotective effect of Rubia cordifolia Linn. on aspirin plus pylorus-ligated ulcer (2011) Evid Based Complement Alternat Med, 2011, pp. 541-624. , 10.1155/2011/541624Flemstrom, G., Isenberg, J.I., Gastroduodenal mucosal alkaline secretion and mucosal protection (2001) News Physiol Sci, 16, pp. 23-28. , 11390942 1:CAS:528:DC%2BD3MXjsV2ntbs%3DGrisham, M.B., Von Ritter, C., Smith, B.F., Lamont, J.T., Granger, D.N., Interaction between oxygen radicals and gastric mucin (1987) Am J Physiol, 253, pp. 93-G96. , 3605340 1:CAS:528:DyaL2sXltFSlt74%3DForstner, G., Signal transduction, packaging and secretion of mucins (1995) Annu Rev Physiol, 57, pp. 585-605. , 7778879 10.1146/annurev.ph.57.030195.003101 1:CAS:528:DyaK2MXksVeqsb4%3DAvila, J.R., Lastra, C., Martín, M.J., Motilva, V., Luque, I., Delgado, D., Esteban, J., Herrerias, J., Role of endogenous sulphydryls and neutrophil infiltration in the pathogenesis of gastric mucosal injury induced by piroxicam in rats (1996) Inflamm Res, 45, pp. 83-88. , 8907589 10.1007/BF02265120 1:CAS:528:DyaK28XhslCms7g%3DMotilva, V., López, A., Martin, M.J., La Casa, C., Alacón De La Lastra, C., Cytoprotective activity of cisapride on experimental gastric mucosal lesions induced by ethanol. Role of endogenous prostaglandins (1996) Prostaglandins, 52, pp. 63-74. , 8875638 10.1016/0090-6980(96)00052-4 1:CAS:528:DyaK28XlsVeju7k%3DSalvemini, D., Misko, T.P., Masferrer, J.L., Seibert, K., Currie, M.G., Needleman, P., Nitric oxide activates cyclooxygenase enzymes (1993) Proc Natl Acad Sci USA, 90, pp. 7240-7244. , 7688473 10.1073/pnas.90.15.7240 1:CAS:528:DyaK3sXltlOhu7g%3DKortezova, N.I., Shikova, L.I., Milusheva, E.A., Itzev, D.E., Muscarinic modulation of nitrergic neurotransmission in guinea-pig gastric fundus (2004) Neurogastroenterol Motil, 16, pp. 155-165. , 15086869 10.1111/j.1365-2982.2004.00514.x 1:STN:280: DC%2BD2c7ptFymtw%3D%3DAly, A., The role of nitric oxide and sulfhydryls in gastric mucosal protection induced by sodium cromoglycate in rats (1995) J Pharm Pharmacol, 47, pp. 739-743. , 10.1111/j.2042-7158.1995.tb06734.xSzelenyi, I., Brune, K., Possible role of oxygen free radicals in ethanol-induced gastric mucosal damage in rats (1988) Dig Dis Sci, 33, pp. 865-871. , 3378480 10.1007/BF01550977 1:CAS:528:DyaL1cXks1yksrs%3DRastogi, L., Patnaik, G.K., Dikshit, M., Free radicals and antioxidant status following pylorus ligation induced gastric mucosal injury in rats (1998) Pharmacol Res, 38, pp. 125-132. , 9721600 10.1006/phrs.1998.0343 1:CAS:528:DyaK1cXlsFeiur0%3DBrzozowski, T., Konturek, P.C., Konturek, S.J., Brzozowska, I., Pawlik, T., Role of prostaglandins in gastroprotection and gastric adaptation (2005) J Physiol Pharmacol, 56, pp. 33-55. , 16247188Matsui, H., Shimokawa, O., Kaneko, T., Nagano, Y., Rai, K., Hyodo, I., The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine (2011) J Clin Biochem Nutr, 48, pp. 107-111. , 21373261 10.3164/jcbn.10-79 1:CAS:528:DC%2BC3MXltlektbY%3

    Gastroprotective mechanisms of the chloroform and ethyl acetate phases of Praxelis clematidea (Griseb.) RMKing & H.Robinson (Asteraceae)

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Flavonoid-rich Praxelis clematidea (Griseb.) R.M.King & H.Robinson (Asteraceae) is a native plant of South America. This study evaluates the gastroprotective activity and possible mechanisms for both the chloroform (CHCl3P) and ethyl acetate phases (AcOEtP) obtained from aerial parts of the plant. The activity was investigated using acute models of gastric ulcer. Gastric secretion biochemical parameters were determined after pylorus ligature. The participation of cytoprotective factors such as mucus, nitric oxide (NO), sulfhydryl (SH) groups, prostaglandin E-2 (PGE(2)), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), reduction of lipid peroxidation (malondialdehyde level), and polymorphonuclear infiltration (myeloperoxidase activity), was also investigated. CHCl3P (125, 250, and 500 mg/kg) and AcOEtP (62.5, 125, and 250 mg/kg) showed significant gastroprotective activity, reducing the ulcerative index by 75, 83, 88 % and 66, 66, 81 % for ethanol; 67, 67, 56 % and 56, 53, 58 % for a non-steroidal anti-inflammatory drug (NSAID); and 74, 58, 59 % and 64, 65, 61 % for stress-induced gastric ulcer, respectively. CHCl3P (125 mg/kg) and AcOEtP (62.5 mg/kg) significantly reduced the ulcerative area by 78 and 83 %, respectively, for the ischemia-reperfusion model. They also did not alter the biochemical parameters of gastric secretion, the GSH level or the activities of SOD, GPx or GR. They increased the quantity of gastric mucus, not dependent on NO, yet dependent on SH groups, and maintained PGE(2) levels. The P. clematidea phases demonstrated gastroprotective activity related to cytoprotective factors.673480491Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    The Effect Of A Minor Constituent Of Essential Oil From Citrus Aurantium: The Role Of β-myrcene In Preventing Peptic Ulcer Disease

    No full text
    The monoterpene β-myrcene has been widely used in cosmetics, food and beverages, and it is normally found in essential oil from citrus fruit. The aim of this study was to investigate the anti-ulcer effects of β-myrcene on experimental models of ulcers that are induced by ethanol, NSAIDs (non-steroidal anti-inflammatory drugs), stress, Helicobacter pylori, ischaemia-reperfusion injury (I/R) and cysteamine in order to compare with the essential oil of Citrus aurantium and its major compound limonene. The results indicate that the oral administration of β-myrcene at a dose of 7.50 mg/kg has important anti-ulcer activity with significantly decreased gastric and duodenal lesions as well as increased gastric mucus production. The results showed treatment with β-myrcene caused a significant increase in mucosal malondialdehyde level (MDA), an important index of oxidative tissue damage. The β-myrcene was also endowed with marked enhancement of antioxidant enzyme activity from GR system as evidenced by the decreased activity of superoxide dismutase (SOD) and increased levels of glutathione peroxidase (GPx), glutathione reductase (GR), and total glutathione in gastric tissue. Our results also shown that treatment with β-myrcene is not involved with thioredoxin reductase (TrxR) activity. Our results reveal, for the first time, the importance of β-myrcene as an inhibitor of gastric and duodenal ulcers and demonstrate that an increase in the levels of gastric mucosa defence factors is involved in the anti-ulcer activity of β-myrcene. © 2014 Elsevier Ireland Ltd. All rights reserved.21211119Vonkeman, H.E., Klok, R.M., Postma, M.J., Brouwers, J.R.B.J., Van De Laar, M.A.F.J., Direct medical costs of serious gastrointestinal ulcers among users of NSAIDs (2007) Drugs and Aging, 24 (8), pp. 681-690. , http://aging.adisonline.com/pt/re/dra/pdfhandler.00002512-200724080- 00005.pdf;jsessionid=GKGXyhGvRVt6JF22snhwLmCLNWrs24mQ95N7SqwkJl4WrQCKymdB!- 362743511!181195628!8091!-1, DOI 10.2165/00002512-200724080-00005Tang, R.S., Chan, F.K., Therapeutic management of recurrent peptic ulcer disease (2012) Drugs, 72, pp. 1605-1616Ramakrishnan, K., Salinas, R.C., Peptic ulcer disease (2007) Am. Fam. Physician, 76, pp. 1005-1012Saghaie, F., Karimi, I., Jouyban, A., Samini, M., Effects of captopril on the cysteamine-induced duodenal ulcer in the rat (2012) Exp. Toxicol. Pathol., 64, pp. 373-377Halliwell, B., Gutteridge, J.M.C., (2006) Free Radicals in Biology and Medicine, , fourth ed. Oxford University Press UKGünther, E., (1949) The Essential Oils. The Constituents of Essential Oils. New York, pp. 8-8. , E. Günther (Ed.)Moraes, T.M., Kushima, H., Moleiro, F.C., Santos, R.C., Rocha, L.R.M., Marques, M.O., Vilegas, W., Hiruma-Lima, C.A., Effects of limonene and essential oil from Citrus aurantium on gastric mucosa: Role of prostaglandins and gastric mucus secretion (2009) Chem. Biol. Interact., 180, pp. 499-505Leung, A.Y., (1980) Encyclopedia of Commom Natural Ingredients Used in Food, Drugs and Cosmetics, , third ed. Wiley New YorkPolo, C.M., Moraes, T.M., Pellizzon, C.H., Marques, M.O., Rocha, L.R., Hiruma-Lima, C.A., Gastric ulcers in middle-aged rats: The healing effect of essential oil from Citrus aurantium L. (Rutaceae) (2012) Evid. Based Complement Altern. Med., 1, p. 20. , doi: 10.1155/2012/509451Moraes, T.M., Rozza, A.L., Kushima, H., Pellizzon, C.H., Rocha, L.R.M., Hiruma-Lima, C.A., Healing actions of essential oils from Citrus aurantium and d-limonene in the gastric Mucosa: The roles of VEGF, PCNA, and COX-2 in cell proliferation (2013) J. Med. Food, 16, pp. 1162-1167Wagner, H., Multitarget therapy - The future of treatment for more than just functional dyspepsia (2006) Phytomedicine, 13 (SUPPL. 1), pp. 122-129. , DOI 10.1016/j.phymed.2006.03.021, PII S0944711306000778Chen, H.Y., Ye, X.L., Cui, X.L., He, K., Jin, Y.N., Chen, Z., Li, X.G., Cytotoxicity and antihyperglycemic effect of minor constituents from Rhizoma coptis in HepG2 cells (2011) Fitoterapia, 83, pp. 67-73Olfert, E.D., Cross, B.M., McWilliam, A.A., (1993) Guide to the Care and Use of Experimental Animals, , Canadian Council on Animal Care Ottawa, Ontario pp. 1-213Robert, A., Nezamis, J.E., Lancaster, C., Hanchar, A.J., Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury (1979) Gastroenterology, 77 (3), pp. 433-443Rainsford, K.D., Gastric ulcerogenicity of non-steroidal anti-inflammatory drugs in mice with mucosa sensitized by cholinomimetic treatment (1987) Journal of Pharmacy and Pharmacology, 39 (8), pp. 669-672Allen, J.C., Halimton, R.J., (2000) Rancidity and Foods, , Blackie Academic and Professional London, UKAlder, R., (1984) Breakdown in Human Adaptation to Stress, p. 653. , Martinus Ninjihoff BostonUeda, S., Yoshikawa, T., Takahashi, S., Ichikawa, H., Yasuda, M., Oyamada, H., Tanigawa, T., Kondo, M., Role of free radicals and lipid peroxidation in gastric mucosal injury induced by ischemia-reperfusion in rats (1989) Scandinavian Journal of Gastroenterology, Supplement, 24 (162), pp. 55-58Szabo, S., Mechanisms of mucosal injury in the stomach and duodenum: Time-sequence analysis of morphologic, functional, biochemical and histochemical studies (1987) Scandinavian Journal of Gastroenterology, Supplement, 22 (SUPPL. 127), pp. 21-28Rafatullah, S., Tariq, M., Al-Yahya, M.A., Mossa, J.S., Ageel, A.M., Evaluation of turmeric (Curcuma longa) for gastric and duodenal antiulcer activity in rats (1990) Journal of Ethnopharmacology, 29 (1), pp. 25-34Curtis, G.H., Macnaughton, W.K., Gall, D.G., Wallace, J.L., Intraluminal pH modulates gastric prostaglandin synthesis (1995) Can. J. Physiol. Pharmacol., 73, pp. 130-134Matsuda, H., Li, Y., Yoshikawa, M., Gastroprotections of escins Ia, Ib, IIa, and IIb on ethanol-induced gastric mucosal lesions in rats (1999) European Journal of Pharmacology, 373 (1), pp. 63-70. , DOI 10.1016/S0014-2999(99)00249-6, PII S0014299999002496Ohkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Analytical Biochemistry, 95 (2), pp. 351-358. , DOI 10.1016/0003-2697(79)90738-3Anderson, M.E., Determination of glutathione and glutathione disulfide in biological samples (1985) Methods in Enzymology, VOL. 113, pp. 548-555Yoshikawa, T., Naito, Y., Kishi, A., Tomii, T., Kaneko, T., Iinuma, S., Ichikawa, H., Kondo, M., Role of active oxygen, lipid peroxidation, and antioxidants in the pathogenesis of gastric mucosal injury induced by indomethacin in rats (1993) Gut, 34 (6), pp. 732-737Carlberg, I., Mannervik, B., Glutathione reductase (1985) Methods in Enzymology, VOL. 113, pp. 484-490Winterbourn, C.C., Hawkins, R.E., Brian, M., Carrell, R.W., The estimation of red cell superoxide dismutase activity (1975) J. Lab. Clin. Med., 85, pp. 337-341Krawisz, J.E., Sharon, P., Stenson, W.F., Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models (1984) Gastroenterology, 87 (6), pp. 1344-1350(2006) Manual Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved standards-6a Ed. Performance Standards for Antimicrobial Susceptibility Testing. Sixteenth Informational Supplement M100-S16 (Tab 2J), , CLSI Clinical and Laboratory Standards Institute, Wayne, PAFranke, A., Teyssen, S., Singer, M.V., Alcohol-related diseases of the esophagus and stomach (2005) Digestive Diseases, 23 (3-4), pp. 204-213. , DOI 10.1159/000090167Siegmund, S., Animal models in gastrointestinal alcohol research - A short appraisal of the different models and their results (2003) Best Pract. Res. Clin. Gastroenterol., 17, pp. 519-542Repetto, M.G., Llesuy, S.F., Antioxidant properties of natural compounds used in popular medicine for gastric ulcers (2002) Brazilian Journal of Medical and Biological Research, 35 (5), pp. 523-534Gandhi, M.N., Siva, R.C., Pari, P., Tejal, G., Role of leukotrienes in NSAID induced gastric ulceration and inflammation in Wistar rats (2012) Asian Pac. J. Trop. Dis., pp. 215-219Wallace, J.L., Pathogenesis of NSAID-induced gastroduodenal mucosal injury (2001) Best Practice and Research in Clinical Gastroenterology, 15 (5), pp. 691-703. , DOI 10.1053/bega.2001.0229Wallace, J.L., Granger, D.N., The cellular and molecular basis of gastric mucosal defense (1996) FASEB Journal, 10 (7), pp. 731-740Brodie, D.A., Hanson, H.M., A study of the factors involved in the production of gastric ulcers by the restraint technique (1960) Gastroenterology, 38, pp. 353-360Ji, C., Fan, D., Li, W., Guo, L., Liang, Z., Xu, R., Zhang, J., Evaluation of the anti-ulcerogenic activity of the antidepressants duloxetine, amitriptyline, fluoxetine and mirtazapine in different models of experimental gastric ulcer in rats (2012) Eur. J. Pharmacol., 691, pp. 46-51Laine, L., Takeuchi, K., Tarnawski, A., Gastric mucosal defense and cytoprotection: Bench to bedside (2008) Gastroenterology, 135 (1), pp. 41-60. , DOI 10.1053/j.gastro.2008.05.030, PII S0016508508007944Abdallah, D.M., El-Abhar, H.S., Abdel-Aziz, D.H., TEMPOL, a membrane permeable radical scavenger, attenuates gastric mucosal damage induced by ischemia-reperfusion: A key role for superoxide anion (2009) Eur. J. Pharmacol., 603, pp. 93-97Wallace, J.L., Miller, M.J.S., Nitric oxide in mucosal defense: A little goes a long way (2000) Gastroenterology, 119 (2), pp. 512-520Khomenko, T., Kolodney, J., Pinto, J.T., McLaren, G.D., Deng, X., Chen, L., Tolstanova, G., Szabo, S., New mechanistic explanation for the localization of ulcers in the rat duodenum: Role of iron and selective uptake of cysteamine (2012) Arch. Biochem. Biophys., 525, pp. 60-70Ji, C.X., Fan, D.S., Li, W., Guo, L., Xu, Z.L., Liang, R.M., Zhang, J.J., Evaluation of the anti-ulcerogenic activity of the antidepressants duloxetine, amitriptyline, fluoxetine and mirtazapine in different models of experimental gastric ulcer in rats (2012) Eur. J. Pharmacol., 691, pp. 46-51Allen, A., Flemstrom, G., Gastroduodenal mucus bicarbonate barrier: Protection against acid and pepsin (2005) Cell Physiol.: Am. J. Physiol., 288, pp. 1-19Brzozowski, T., Konturek, P.C., Mierzwa, M., Drozdowicz, D., Bielanski, W., Kwiecien, S., Konturek, S.J., Hahn, E.G., Effect of probiotics and triple eradication therapy on the cyclooxygenase (COX)-2 expression, apoptosis, and functional gastric mucosal impairment in Helicobacter pylori-infected Mongolian gerbils (2006) Helicobacter, 11, pp. 10-20Mei, S., Gu, H., Yang, X., Guo, H., Liu, Z., Cao, W., Prolonged exposure to insulin induces mitochondrion-derived oxidative stress through increasing mitochondrial cholesterol content in hepatocytes (2012) Endocrinology, 153, pp. 2120-2129Mustacich, D., Powis, G., Thioredoxin reductase (2000) Biochemical Journal, 346 (1), pp. 1-8. , DOI 10.1042/0264-6021:3460001Ciftci, O., Ozdemir, I., Tanyildizi, S., Yildiz, S., Ogozturk, H., Antioxidantive effects of curcumin, β-myrcene, 1,8 cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver (2011) Toxicol. Ind. Health, 27, pp. 447-453Nervi, G., Liatopoulou, S., Cavallaro, L., Does Helicobacter pylori infection eradication modify peptic ulcer prevalence? A 10 years endoscopical survey (2006) World J. Gastroenterol., 12, pp. 2398-240

    The effect of a minor constituent of essential oil from Citrus aurantium: The role of beta-myrcene in preventing peptic ulcer disease

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The monoterpene beta-myrcene has been widely used in cosmetics, food and beverages, and it is normally found in essential oil from citrus fruit. The aim of this study was to investigate the anti-ulcer effects of beta-myrcene on experimental models of ulcers that are induced by ethanol, NSAIDs (non-steroidal anti-inflammatory drugs), stress, Helicobacter pylori, ischaemia-reperfusion injury (I/R) and cysteamine in order to compare with the essential oil of Citrus aurantium and its major compound limonene. The results indicate that the oral administration of beta-myrcene at a dose of 7.50 mg/kg has important anti-ulcer activity with significantly decreased gastric and duodenal lesions as well as increased gastric mucus production. The results showed treatment with beta-myrcene caused a significant increase in mucosal malondialdehyde level (MDA), an important index of oxidative tissue damage. The beta-myrcene was also endowed with marked enhancement of antioxidant enzyme activity from GR system as evidenced by the decreased activity of superoxide dismutase (SOD) and increased levels of glutathione peroxidase (GPx), glutathione reductase (GR), and total glutathione in gastric tissue. Our results also shown that treatment with beta-myrcene is not involved with thioredoxin reductase (TrxR) activity. Our results reveal, for the first time, the importance of beta-myrcene as an inhibitor of gastric and duodenal ulcers and demonstrate that an increase in the levels of gastric mucosa defence factors is involved in the anti-ulcer activity of beta-myrcene. (C) 2014 Elsevier Ireland Ltd. All rights reserved.2121119Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore